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Abstract. This work shows a method to recover the shape of the surface via randomized
algorithms when the null-screen test is used, instead of the integration process that is
commonly performed. This, because the majority of the errors are added during the
reconstruction of the surface (or the integration process). This kind of large surfaces are widely
used in the aerospace sector and industry in general, and a big problem exists when these
surfaces have to be tested. The null-screen method is a low-cost test, and a complete surface
analysis can be done by using this method. In this paper, we show the simulations done for the
analysis of fast conic surfaces, where it was proved that the quality and shape of a surface
under study can be recovered with a percentage error < 2.

1. Introduction

In recent years, monitoring systems and real-time inspection have been certainly very attractive tools
for the manufacturing industry and industry in general. When these inspection systems are not
destructive and have a fast image capture and processing time, besides small dimensions and low
weight, their interest increases greatly. Nowadays, the demand for new and more precise non-
destructive industrial control techniques that allow automatic or almost automatic evaluation of the
object to be inspected has been growing. This requires accurate and fast methods able to perform in
situ measurements?i.e. in the production line, in a workshop or in a place where the piece is measured
sometimes outside of a laboratory environment.
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For this purpose, we decided to use the technique of null-screens [1, 2]. This technique allows us to
evaluate specular or partially reflective surfaces without contact, it is very robust and easy to handle,

and besides that this method is capable of analyzing very large surfaces with a wide range of shapes
(3, 4].

2. Null-screen method
The basic concept of this test is to design null-screens starting from the ideal shape of the surface

under study. These null-screens are printed with geometric shapes which can be stripes, dots, drops,

among others (Figure 1). This drawing is located on the screen in such way that, when it is reflected

by the surface under test, if the surface is ideal or has a high quality, the observed image that also

depends on the used geometry, can be stripes or dots perfectly aligned without deformation [1] (Figure
Drops Null-Screen b)
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Figure 1. Null-screens a) fringes and b) drops.

However, if the surface is not ideal, or is not the surface for which the screen was designed, the
observed image could have stripes or points that do not follow a perfect grid (Figure 2b). From the
differences between the perfect grid (theoretical) and the distorted grid (experimental) can be obtained
relevant information about the shape of the surface that is being analyzed.
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Figure 2. Centroids on the
CCD, from the surface a)
theoretical and b) distorted.

y(mm)
o
y (mm)
°
00 0o
000 00%°% 000

0.5 0.5




VIII International Congress of Engineering Physics IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 792 (2017) 012028 doi:10.1088/1742-6596/792/1/012028

3. Mathematical basis
To determine the coordinates where each drop will be located on the null-screen, which will generate a

perfect grid on the CCD, we make a reversed ray-tracing (figure 3). These rays leave the CCD P,(x,
¥1, 21) passing through the pinhole P(0, 0, b) and intersect the surface at the point P,(x, y», 22).

x Surface
under test

Figure 3. Setup for calculating a null-screen.
From equation of the sagitta which describes this type of surface given by

2 2 2
Qlz,—z,) x2r(z,—2)) +(y, = ¥,) +(x,—x,)" =0,
where r is the paraxial radius of curvature, X, yo, 2o are the decentering of the surface and Q = (k-1),

where k is defined by the conic constant.
To obtain the coordinates where the reflected ray intersects the cylinder, we start from the equation

of the cylinder
(% =x) =y, -x) =c.

The parametric equations of the reflected ray are defined by

X;=X,+RA
Ys=X, +Ryﬂ’
z,=2,+ R,

where
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Substituting the equation into , matching up A terms we have

OA*+PA+T =0,
where
O=R; +R;
P=2xR —-2xR +2y,R —2y,R,
T=x22 +x§ —2x2x0+y§ +y§ =2Y,% +C°.

Solving with the quadratic formula for A

P++P’—40T
20 '
With this, we obtain the coordinates x;, y;, and z3, which correspond to the positions where the rays
reflected by the surface intersect the display.
It should be noted that the diameter of the null-screen in the case of convex surfaces is greater than the
diameter of the surface.

A=—

4. Surface analysis
In this section, the method used for the analysis of synthetic patterns is described.

4.1 Algorithm used for the analysis

It was decided to use a probabilistic algorithm for the surface analysis. The algorithm has three basics
steps: two cycles to found the nearest solution to the problem, and a third cycle was only for the
acquisition of the entrance data. The three steps of the algorithm are described next:

Step 1. Parameter acquisition

In this step, the theoretical surface data are acquired (i.e., radius of curvature, conic constant, diameter,
a and b parameters, the size of the CCD, cylinder diameter, and experimental centroids positions), all
this could be written in a .txt or .jpg file.

This data are necessary to calculate the theoretical centroids position of every spot in the null-
screen. This task is done with the aim of making a comparison between the positions of every spot in
the null-screen, with respect to the calculated position regarding the experimental centroids image
while the surface form is varying.

Step 2. “Approximation” cycle

In this cycle, the conic constant, radius of curvature, surface, and screen decentering (xo, Yo, 2o) and
(x0”, ¥0', 20"), nearest to the real solution are found. This solution is found by modifying a theoretical
surface by changing in a random manner the coefficients mentioned before. The found coefficients are
introduced in the “limits reduction” cycle which is described next.

Step 3. “Limits reduction” cycle
In this cycle, the coefficients found in the approximation cycle are optimized. This process of
optimization is done in our case by using the next equation
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Coef =V —(V #n) +(V *n) 2rand,

where V is the value found in the approximation cycle, n is the percent of V where the search was
done, and rand is a random value. With this process, the search of the solution is reduced to a +n% of
V. At the end of this cycle, the values found for every coefficient are taken as the values that describe
the surface under test.

4.2 Decentered surface (xq20, y20, 7,20)
In this subsection, we are going to talk about the decentered surface problem. This is a typical problem
in the laboratory when a surface is being tested. The synthetic surface and the decentered coefficients
used in this analysis are shown in Table 1.

Table 1. Design parameters of the Synthetic surface.

Surf. Design Surf. .
Decentering
r 8.75 mm Xo 0.41 mm
k -3.65 Yo  -0.63 mm
D 35.0 mm zy  -0.95 mm

A comparison between the centroids positions without decentering (blue) and the change in the
centroids positions when a decentering is introduced in x, y and z (red) are shown in Figure 4a, where
the centered and decentered centroids positions can be seen.
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Figure 4. Surface centroids on the CCD, a) comparison between
theoretical and decentered centroids position; and b) plot of the y position

of each centroid.

In Figure 4b, the y positions of every centroid with respect to its assigned value are shown. This is
done to prove that the correspondence between centroids was well done. This correspondence is done
as follows: the coordinates in pixels of one centroid is taken from the real image, then the nearest
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centroid to this position is searched in the decentered image. To prove that this correspondence was

well done, the y positions of each centroid was plotted.
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Figure 5. The behavior of, a) radius of curvature, b) conic constant,
decentering in c) x, d) y, e) z and f) merit function when the program
converged.
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The recovered values by our modified algorithm are shown in Table 2. It can be seen that the
percentage errors of the decentered coefficient in z and the conic constant was 1.89% and 0.28%,
respectively.

Table 2. Comparison between the design and the recovered values.

Design value Recovered value Percentage error

r 8.75 mm 8.7491 mm 0.01
k -3.65 -3.6605 0.28
Xo 0.41 mm 0.4060 mm 0.97
Yo  -0.63 mm -0.6274 mm 0.41
Zo -0.95 mm -0.9680 mm 1.89

5. Conclusions

In this paper, an algorithm for obtaining the shape of a conical concave or convex synthetic surface
was presented. We described the null-screen design procedure and the randomized algorithm used for
the surface analysis, where instead of using an integration process as is usually performed, the shape
of the surface is found in a direct and in a random way.

We found that the surface decentering coefficients were recovered with a maximum percentage error
less than 2%, while for the case of the coefficients which describe the surface shape (r and k), the
maximum percentage of error was less than 0.3%. With our method, we eliminated the errors that are
introduced during the integration process, therefore, our percentage error is reduced in a great manner.
On the other hand, this algorithm can be modified for the analysis of surfaces of any size and shape
due the hardiness of our method, where we can modify the parameters of the surface that we want to
analyze, i.e. from surfaces of the human eye to the new generation of telescopes surfaces.
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