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Abstract. The paper compares hydrodynamic properties of three-dimensional flows 

of polymer melts. A modified Vinogradov and Pokrovskii rheological model is used 

for the mathematical description of nonlinear viscoelastic fluid flows in a plane-

parallel channel with a sudden convergence. Discrete analogs for partial differential 

equations were obtained via the control volume method separating physical processes. 

The numerical implementation is carried out using the GPU-based parallel computing 

technology. Velocity and pressure fields have been calculated for two samples of 

polyethylene melts and the circulating flow at the entrance of the slit channel is 

noticeable. It is shown that the size of the vortex zone depends significantly on melt 

rheology. 

1.  Introduction 

Mathematical study polymer fluids flows involves two interrelated phases. Firstly, it is selection and 

justification of the rheological model. Secondly, it is the algorithmic implementation of the obtained 

equations and the numerical experiment. Regarding the first step, there are plenty of rheological 

models of various complexity [1,2,5-12]). All these models describe the main effects observed in 

viscometric experiments: gradient dependence of shear and elongation viscosity, the first and second 

normal stress difference and non-monotonic establishment of time dependence of shear and elongation 

stresses. 

    All viscometric flows have a fairly simple structure, since the velocity gradient tensor is known, and 

all the models show similar accuracy in the description of these flows. Therefore, the issue of 

adequacy of the rheological model is solved via calculation of two and three-dimensional flows in 

areas with complex geometry. 

    In this paper, we apply a modified Vinogradov-Pokrovskii rheological model to solve the problem 

of mathematical modeling of three-dimensional nonlinear viscoelastic fluid flows in a plane-parallel 

channel with a sudden contraction. The method of control volume with the division of physical 

processes is used upon obtaining discrete analogs. The numerical implementation is carried out using 

GPU-based parallel computing technology CUDA. 

 

2. The mathematical model 

It is well-known that linear polymer melts are non-linear viscoelastic media. Nowadays the equations 
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that take into account essential features of polymeric liquids behavior are commonly used to describe 

their flows [5-9]. The priority in choosing a mathematical model should be given to models which to 

some extent take into account the structure of polymer molecules. It is quite complicated so the most 

popular models are those based on the mesoscopic approach. In this case, the behavior of polymer 

macromolecules is replaced by the behavior of one or more relaxation oscillators, and the transition to 

macroscopic description is carried out via methods of statistical mechanics [5,8,9,12,13]. One such 

model is a modified Vinogradov and Pokrovskii rheological model [9]  

    (1) 

Where aik – stress tensor of the polymer system; aik – dimensionless extra stress tensor; p – hydrostatic 

pressure; no – initial value of shear viscosity, t0 – initial relaxation time; K and – scalar coefficients of 

anisotropy taking into account shape and size of macromolecular coil; vik – velocity gradient tensor; yik 

– symmetrized velocity gradient tensor; I – trace of tensor aik. 

    In paper [10] the two- and three-dimensional flows under the constant pressure gradient are 

considered in channels with a rectangular cross-section. The pressure field gradient has been known. 

In paper [15] an axisymmetric circular channel was used to model the input flows. However, an 

attempt to use the numerical method [15] for calculating flat channels failed. For calculating real flows 

on the basis of this model the following equations of momentum conservation and mass should be 

added to (1)  

   (2) 

Here p - the density of the polymer; vi - i-th component of the velocity vector. 

    The system of equations (1, 2) is closed with respect to variables aik, vi, p. To solve the problem 

initial and boundary conditions are required. We first discuss the computational domain to establish 

these conditions. 

    The computational domain involves two 3D boxes. The first reservoir is channel 14 x 14(mm) with 

a square section, the second a slotted channel with a cross section of 14 x 1(mm). Lengths of the 

parallelepipeds are selected sufficiently large -80 < x < 80(mm) to eliminate the influence both of the 

input into the tank and output from the slotted channel. It is expected that within this area the flow will 

be three-dimensional, i.e. different directions in different axes. In this case, the main flow is directed 

along axis Ox; whereas along axis Oy a strong flow compression will occur. This can cause vortices 

though along axis Oz changes will be immaterial. Therefore, we call axis Ox - the flow direction, axis 

Oy - the direction perpendicular to the flow, and axis Oz - the direction neutral to the flow. 

   The main boundary conditions are stick conditions on a solid surface for velocity: vi = 0. 

    The boundary conditions for the dimensionless stresses are obtained by substituting these conditions 

in (1) and discarding the corresponding terms. 

    The boundary conditions z = 0 and y = 0 are used for terms of symmetry or vanishing of the 

corresponding partial derivatives. At the entrance to the reservoir at x = -80 for the velocity 

components we use expressions v2(—80,y,z) = v3(—80,y,z) = 0 and vi(-80,y,z) = 9V(z — 7)
2
(y — 

7)
2
/5488(mm/s), where V - volume flow rate. 

    Flows in a plane-parallel channel with a sudden contraction, are commonly referred to as 

converging flows or input flows. In order to calculate such flows via model (1, 2) it is necessary to 

determine the numerical values of the parameters for the rheological model: K, P, no and To . To do 

this, we turn to the experimental data on the dependence of steady-state shear viscosity on the shear 

rate [18] where flows of two samples of polyethylene melts were applied - linear low density 

polyethylene (LLDPE) and low density polyethylene (LDPE). The model parameters were chosen to 
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give the best agreement between the experimental and theoretical curves. For LLDPE sample we 

obtained no = 14500(Pa ∙ s), T0 = 0.2(s), and for the LDPE no = 18500(Pa ∙ s), T0 = 2(s). Anisotropy 

parameters P = 0,1 and K = 0,12 were the same. Density values were given in [18] and account for 

918(kg/m
3
) for LDPE and 926(kg/m

3
) for LLDPE. 

    The numerical method is constructed for relatively easy implementation when creating a computer 

model using technologies GPU NVIDIA and CUDA. The finite-difference approach is employed to 

find the solution. For the difference approximation the method of control volume was used that does 

not cause difficulties in a relatively simple geometry of the domain. 

3. Mathematical modeling for exit flows 

To compare the results of calculations we used the experimental data [18] where flows of two samples 

of polyethylene melts were applied LLDPE and LDPE. The differences between these two examples 

is that LLDPE shear viscosity changes less than for LDPE, and LLDPE relaxation time is shorter than 

that of LDPE. We found out that there is an explicit secondary flow for LDPE flows in the corners of 

the flow channel, which is not observed for LLDPE. These vortices change their shape in the channel 

cross-sections parallel to the axis, which characterizes the three-dimensional nature of the flow field. 

Furthermore, it is noted that within the investigated vortex flow there is a helical stream, which is 

directed to the tank wall. Particular attention is paid to the distribution of velocity along the symmetry 

axis of the channel. It was found that LDPE maximum velocity is observed directly in the entrance 

portion of the channel slot. This effect does not appear for LLDPE under the same conditions. 

    All these effects are found during the numerical experiment. The calculations imply that the 

increase in speed in the slit of the channel happens due to the three-dimensional nature of the flow 

field and the stress caused by the increase in the flow of LDPE compared with a sample of LLDPE. 

The three-dimensional nature of LDPE flow is confirmed by the presence of the neutral component of 

velocity in the flow direction, which was not observed for LLDPE flow. This additional component of 

velocity results in increasing the volumetric flow along the centerline at the entrance to the slit 

channel. 

    Thus, the velocity, pressure and stress fields were calculated in a steady flow. Herewith circulating 

areas were found at the entrance of the slit channel. As seen from Figure 1 for LLDPE sample (T0 = 

0,2(s)), the reverse flow zone is negligible. For LDPE sample (T0 = 2(s)) this zone, as seen from 

Figure 2 is much larger. Note that the value of viscous parameter no in these samples is approximately 

the same and the difference in their behavior should be attributed to time parameter T0. 

 
Figure 1. Comparison of experimental (a) and theoretical (b) LLDPE velocity vector fields in a slit 

entrance channel (V = 0, 20 [cm
3
/s]) 

2nd International Conference on Rheology and Modeling of Materials (IC-RMM2)                         IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 790 (2017) 012014          doi:10.1088/1742-6596/790/1/012014

3



 
Figure 2. Comparison of experimental (a) and theoretical (b) LDPE velocity vector fields in a slit 

entrance channel (V = 0,20 [cm
3
/s]) 

 

We note that the values of the Reynolds number calculated using the formula (Re = pvoh/no) for the 

considered currents in the slot channel do not exceed 0, 02. Such flows are fairly well understood in 

the classical Newtonian model, and eddy zones in this case are not observed. 

    Thus, converging flows for some polymer melts may exhibit a substantial three-dimensional picture 

that is shown by the presence of velocity components in the direction neutral to the flow. This should 

be taken into account in the design of the experiment, as there are methods that are not able to 

measure all the components of velocity. 

    Also one should mention the fact of long-term relaxation of the velocity profile in the gap. 

Calculations showed that the steady velocity profile is observed at a considerable distance from the 

entrance slit. This should be considered when conducting measurements in a narrow channel portion. 

    Previously, it was noted the presence of eddy currents in the corners of the flow channel, the size of 

which depends strongly on the temperature of the melt and on specific consumption. 

 
Figure 3. The size of the vortex in different sections 
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One of the essential characteristics of the test flow is the size of the vortex. We calculated the area of 

the vortex zones when flow section planes z = const. Comparing shown in Figure 3 the calculated and 

experimental vortex sizes depending on the distance from the axis of the channel may be concluded 

that an increase in the intensity of the vortex flows away from the axis of the channel. This fact can 

be explained by Weissenberg effect. From this comparison it can be concluded qualitative agreement 

of the experimental and the payment data. Note that in the calculations carried out for the Newtonian 

law of behavior (TO = 0; P0 = p0 = 0) demonstrate the absence of vortex zones, and calculations for 

viscoelastic Oldroyd-B (PO = p0 = 0) show low values of the vortex area and the lack of increase in 

the intensity of the vortex when you remove the cross section on the axis of the channel. 

References 

[1] Wilco M.H. Verbeeten, Gerrit W.M. Peters, Frank P.T. 2004 J. Non-Newtonian Fluid Mech. 117 

73-84. 

[2] Mitsoulis E., Schwetz M, Mnstedt H. 2003 J. Non-Newtonian Fluid Mech. 111 41-61. 

[3] H. Munstedt, M. Schmidt, E. Wassner 2000 J. Rheol. 44 413-427. 

[4] Afonso A.M., Oliveira P.J., Pinho F.T., Alves M.A. 2011 J. Fluid Mech. 677 272-304. 

[5] McLeish T.C.B., Larson R.G. 1998 J. Rheol. 42 81. 

[6] Verbeeten W.M.H., Peters G.W.M., Baaijens F.P.T. 2001 J. Rheol. 45 823. 

[7] Leonov A.I., Prokunin A.N. 1994 Chapman and Hall, New York. 1sted 356-395. 

[8] Pyshnograi G.V., Gusev A.S., Pokrovskii V.N. 2009 J. Non-Newtonian Fluid Mech. 163 17-28. 

[9] Pokrovskii V.N. 2010 The Mesoscopic Theory of Polymer Dynamics. 2nd Edition. (Berlin: 

Springer) 184. 

[10] Kuznetsova Yu.L., Skul’skiy O.I., Pyshnogray G.V. 2010 Computational Continuum 

Mechanics. 2 55-69 (in Russian). 

[11] Altukhov Yu.A., Samoylov V.S., Pyshnograi I.G., Pyshnograi G.V. 2012 Journal on Composite 

Mechanics and Design. 18 325-332. 

[12] Altukhov Yu.A., Pyshnograi G.V., Pokrovskii V.N. 2004 J. Non-Newtonian Fluid Mech. 121 

73-86. 

[13] Pokrovskii V.N., Altukhov Y.A., Pyshnograi G.V. 1998 J. Non-Newtonian Fluid Mech. 76 153-

181. 

[14] Altukhov Yu.A., Golovicheva I.E., Pyshnograi G.V. 2000 Fluid Dynamics. 1 3. 

[15] Altukhov Yu.A., Pyshnograi G.V. 2001 Journal on Composite Mechanics and Design. 1 16-23. 

[16] Koshelev K.B., Pyshnograi G.V., Tolstykh M.Yu. 2015 Fluid Dynamics 50 315-321. 

[17] Hertel D., Mnstedt H. 2008 J. Non-Newtonian Fluid Mech. 152 73-81. 

[18] Hertel D., Valette R., Mnstedt H. 2008 J. Non-Newtonian Fluid Mech. 153 82-94. 

2nd International Conference on Rheology and Modeling of Materials (IC-RMM2)                         IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 790 (2017) 012014          doi:10.1088/1742-6596/790/1/012014

5


