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Abstract. Finding the minimal cut on the directed graph is an important task that has not
yet been solved in a general form. The solution of this problem allows one to find “the pipeline
bottleneck” of the transport network and manage changing flows efficiently. In this article,
authors discussed a new algorithm for solving this problem, built on the basis of consideration
of the corresponding dual problem.

Introduction

Transport networks are one of the bases part of the fuel and energy complexes. An important
problem is the localization of “the pipeline bottleneck” of the transport network also. A directed
graph with varying flows and possible inflows and outflows of substance at the vertices and at
the edges of the graph is the model of the network. This article describes an algorithm for
the solution of the generalized problem (assuming constant inflows and outflows in arbitrary
network nodes) finding the minimal cut and determine the maximum flow through the network.

1. Problem statement

Suppose to each edge ij of the graph assign the positive number qij. Any such number qij is
called the capacity constraint on the edge. Consider two vertices s and t over from the graph.
Let s be the source, t be the sink. Such graph, with some additional conditions, is called the
network.

Assume that to each edge ij of the graph assign the non-negative number xij ; then a set
{xij} is called the flow from s into t if the following conditions hold:

∑

i

xij −
∑

k

xjk =











−ν, if j = s,

0, if j 6= s, t,

ν, if j = t,

(I)

ν > 0, (II)

0 6 xij 6 qij, for all i, j. (III)

MPMM2016                                                                                                                                         IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 788 (2017) 012057         doi:10.1088/1742-6596/788/1/012057

1

International Conference on Recent Trends in Physics 2016 (ICRTP2016) IOP Publishing
Journal of Physics: Conference Series 755 (2016) 011001 doi:10.1088/1742-6596/755/1/011001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd



By ν denote the maximum flow of the network. Then the maximum flow problem is of the
form:

ν → max . (IV)

Dual problem: To find “the pipeline bottleneck” of the network such that the value of a flow
in the network can be less than or equal to the value V = max ν.

The cut is the minimal cut if the capacity constraint of it is minimal over from all them.
Let S = {s1, s2, . . . , sr} be a nonempty set of the numbers of the vertices, where there exist

sources, T = {t1, t2, . . . , tu} be a nonempty set of the numbers of the vertices, where there exist
sinks.

Note that any vertex can have either a source or a sink only. Also, it can have neither a
source nor a sink. By assumption, there exist one source and one sink in the network. It means
that S 6= ∅, T 6= ∅, S ∩ T = ∅. Then for amount of the sources and the sinks the following
conditions hold: 2 6 r + u 6 m, 1 6 r 6 m, 1 6 u 6 m.

Finite inflows and outflows onto the edges (also into the vertices) of the network are added
in this work as distinguished from the problems discussed in [1].

Let the transport network be represented with a corresponding graph. Then the problem has
the following form:

xT (sj) +
∑

i

xT (ij) −
∑

k

xT (jk) = fj −
∑

i

gT (ij), j = s1, s2, . . . , sr, (1)

∑

i

xT (ij) −
∑

k

xT (jk) = fj −
∑

i

gT (ij), j 6= s1, s2, . . . , sr, t1, t2, . . . , tu, (2)

∑

i

xT (ij) −
∑

k

xT (jk) − xT (jt) = fj −
∑

i

gT (ij), j = t1, t2, . . . , tu, (3)

xT (ij) 6 qT (ij), (4)

− xT (ij) 6 gT (ij), (5)

xT (ij) > 0, xT (sj) > 0, xT (jt) > 0, (6)

ν =
r

∑

i=1

xn+i = xn+1 + xn+2 + · · ·+ xn+r → max, (7)

wherem is the number of all vertices of the graph, n is the number of all edges, xij is a variable of
the flow starting from the i-th vertex and ending in the j-th vertex, qij is the capacity constraint
of the network’s edge, gij is the inflow onto the edge, and fi is the inflow into the i-th vertex.

Here, a transition is made from numbering of the variables and constants with two indeces
towards numbering them with one index, preserving a bijection between them [2]. This bijection
is denoted by T and it has the following form:

T : ij ↔ l; i, j = 1, 2, . . . ,m; l = 1, 2, . . . , n,

T : ν ↔ x0, T : xij ↔ xl, T : qij ↔ ql, T : cij ↔ cl,

T : ssi → n+ i, i = 1, 2, . . . , r, T : ttk → n+ r + k, k = 1, 2, . . . , u.

where (i, j) is an index of the coordinate of a nonzero element in the adjacency-matrix
representation, l = 1, 2, . . . , n, T (zij) = zT (ij) = zl, and z is either a variable or a given value.
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The matrix form of the system of equations and inequalities (1)-(7) is

F (x) =
∑

q

cqxq → max, (8)

A′x = d, (9)

A′′x 6 q, (10)

A′′′x 6 g, (11)

x > 0, (12)

where
dj = fj −

∑

i

gT (ij), j = 1, 2, . . . ,m. (13)

We must substitute two inequalities for the equation (9)

A′x 6 d, (14)

A′

−
x 6 d−, (15)

where A′

−
= −A′, d− = −d−.

Thus, we obtain the standard form of the linear-programming problem. Let a solution our
problem be feasible. Here, we take inverse bijection T−1 and can receive the values of the flows
over all edges.

2. Problem of finding a minimal cut

Dual problem. The aim of this section is to solve the following problem: to have got edges of
a minimal cut such that it should separate the sources S and the sinks T . Also, the following
conditions hold: the constant inflows and outflows in vertices and over edges are balanced.

Now, we take the primal linear-programming problem having the standard form

max 〈x, c〉,

Ax 6 b,

x > 0.

It follows in the standard way that the dual linear-programming problem is

min 〈btr, y〉, (16)

Atry > ctr, (17)

y > 0, (18)

where y = (y1, y2, . . . , y2·(m+n))
tr are dual variables.

It can easily be checked (see [3]) that the standard form of the problem (16 – 18) is

max 〈−btr, y〉, (19)

−Atry 6 −ctr, (20)

y > 0. (21)

Note that, the formula min 〈btr, y〉 = −max 〈−btr, y〉 is correct.
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We stress that the components of formulae (19 – 21) are

btr = (dtr, dtr
−
, qtr, gtr) = (d1, . . . , dm,−d1, . . . ,−dm, q1, . . . , qn, g1, . . . , gn), (22)

Atr = ((A′)tr(A′

−
)tr(A′′)tr(A′′′)tr) = ((A′)tr − (A′)tr(A′′)tr(A′′′)tr), (23)

− c = (0, · · · , 0,−1n+1,−1n+2, · · · ,−1n+r, 0, · · · , 0), (24)

where the matrix Atr has a size of (n+ r+u)× (2 · (m+n)), the row vector btr has a dimension
1× (2 · (m+ n)), the column vector ctr has a dimension (n+ r + u)× 1, and the vector of dual
variables y = (y1, y2, . . . , y2·(m+n))

tr has a dimension (m+ n)× 1.

The coordinates of the column vector btr is of the form (22). In this way, in our numbering,
the set the edges of the network takes the coordinates yi, (i = 2 ·m+1, . . . 2 ·m+n) of the vector
y. The other coordinates correspond to the terms of a distribution of the flow at the vertices or
the edges of the network.

Let a column vector ŷ = (ŷ1, ŷ2, . . . , ŷ2·(m+n))
tr be a solution of our problem (16 – 18).

Consider the column vector

ỹ = (0, . . . , 0, ỹ2·m+1, . . . , ỹ2·m+n, 0, . . . , 0)
tr = (0, . . . , 0, ŷ2·m+1, . . . , ŷ2·m+n, 0, . . . , 0)

tr .

Lemma. Any coordinates of the column vector ỹ are equal to either 0 or 1.

And our main result is the following:

Theorem. The edge with the number i corresponds the unit value of the coordinates ỹ2·m+i,

where i = 1, 2, . . . , n, of vector ỹ. All these edges are the minimal cut such that this cut separates

the sources S and the sinks T .

This statement is the criterion: if the arc is marked by number 1 then this arc belongs to the

minimal cut; if the arc is marked by number 0 then it does not belong to the minimal cut. We

find one of “the pipeline bottleneck” of the network for the maximum-flow.

Constant inflows and outflows in vertices and over edges take some part of the flow. Thus
the sum of capacity constraints of edges for such a cut can be larger than the minimum of the
dual problem. Let us remark that it follows from numerical experiments: the assertion of the
theorem is correct for an unconnected graph.

The provided solution to the task of finding the pipeline bottlenecks can be used effectively
in the optimization of the strategic planning in the reconstruction and development of network
objects for the Gazprom gas-transport system, the Transneft oil pipeline system, etc. Also, this
solution can be used for the control of flows upon the whole.
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