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Abstract. Closed solutions for model problems in non-dissipative thermoelasticity are
obtained. The solutions are in the form of spectral expansion over biorthogonal system of
eigenfunctions corresponded to mutual conjugate pair of operator pencils.

1. Introduction

Thermal disturbances in some materials (in particular, liquid and crystalline helium) are known
to propagate at low temperatures as progressive waves (Peshkov [1]). This phenomenon is usually
referred to as “second sound.” The wave nature of heat propagation substantially changes
the medium heat conductivity, and this change should be taken into account when designing
cryogenic devices. Various theories have been devised to explain this phenomenon (Tisza–
Landau [2], Atkin et al. [3], etc.). Among them are Green–Naghdi theories of thermoelasticity [4],
in which the time primitive of the temperature is chosen as an independent constitutive
variable. Such theories results in very special nonself-adjoint boundary value problems, for which
classical approaches apparently fail. Closed solution for the initial boundary value problems
in the framework of Green-Naghdi type II thermoelasticity were obtained in [9]. The aim of
this paper is to obtain closed solutions for more general problems arising in Green-Naghdi
type III thermoelasticity. The solutions are obtained in the form of spectral expansions in
complete biorthogonal systems of root functions (eigenfunctions and associated functions) of
the corresponding nonself–adjoint operator pencils.

2. Differential operators

Consider an isotropic homogenous body B. The equations of motion and generalized heat
conduction (Green-Naghdi type III) have the form:

µ∇2u+ (λ+ µ)∇∇·u− α∇θ − ρü+ ρb = 0,

Λ∇2θ + Λ∗∇2θ̇ − κθ̈ −̟∇·u̇+ ρs = 0,

where u is the displasement field, θ is the temperature, b is the density of mass force, s
is the power of heat supply, λ and µ are the Lamé elastic moduli and Λ, Λ∗ κ, and ̟
are the thermomechanical moduli. Parameters Λ, Λ∗ are specific for Green-Naghdi type III
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thermoelasticity. The limit case Λ → 0 corresponds to conventional (Fourier) thermoelasticity,
whereas the limit case Λ∗ → 0 corresponds to Green-Naghdi type II thermoelasticity. These
equations, together with the prescribed boundary and initial conditions
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form a well-posed statement of the initial–boundary value problem.
Consider the space of square integrable four-component complex-valued vector functions

(u, θ) with the inner product

〈(u1, θ1), (u2, θ2)〉 =
∫

B

(

u1 ·u2 + θ1θ2
)

dV.

The initial–boundary value problem can be stated as the following Cauchy problem with operator
coefficients:

L (u, θ) = f , L (u, θ) = A0 (u, θ) +A1

∂

∂t
(u, θ) +A2

∂2

∂t2
(u, θ) , f = − (ρb, ρs) ,

A0 =

(

µ∇2 + (λ+ µ)∇∇· −α∇
0 Λ∇2

)

, A1 =

(

0 0
0 Λ∗∇2

)

, A2 = −
(

ρ 0
̟∇ κ

)

.

The problem in question gives rise to the polynomial operator pencil

Lν = A0 + νA1 + ν2A2,

The domain D of the pencil Lν is determined by the boundary operator B as follows:

D =
{

(u, θ)
∣

∣

∣
B(u, θ)

∣

∣

∂P
= 0

}

,

The adjoint pencil L∗

ν can be obtained directly from the definition:

∀ (u1, θ1) ∈ D, (u2, θ2) ∈ D
∗ 〈Lν (u1, θ1) , (u2, θ2)〉 = 〈(u1, θ1) ,L

∗

ν (u2, θ2)〉 .

provided that

L
∗

ν = A
∗

0 + νA1 + ν2A∗

2, A
∗

0 =

(

µ∇2 + (λ+ µ)∇∇· 0
α∇· Λ∇2

)

, A
∗

2 =

(

−ρ ̟∇
0 −β

)

.

We define the domain D∗ of the adjoint pencil L∗

ν as the set of vector functions k∗ = (u∗, θ∗)
such that the bilinear form

〈Lν (u, θ) , (u
∗, θ∗)〉 − 〈(u, θ) ,L∗

ν (u
∗, θ∗)〉 = [(u, θ) , (u∗, θ∗)]∂B

is zero for arbitrary (u, θ) ∈ D. Hence we obtain the adjoint boundary operator B∗ in closed
form. It is well known that the system of root functions of the pencil Lν is biorthogonal to
that of the adjoint pencil. Note that if D = D∗, then this system is a basis. This provides a
theoretical background for the representation of the solution in the form of a spectral expansion.
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3. Solution in the general case

The obtained solutions have the form of expansions based on the systems of eigenfunctions ki
and k∗j that can be found as the solutions of the mutually adjoint boundary value problems

Lνki = 0, L
∗

νkj = 0, ki = (ui, θi) , k∗j =
(

u∗

j , θ
∗

j

)

; i = 1, . . .∞; j = 1, . . .∞. (1)

We assume that the body B is compact. Hence the set of eigenfunctions and the corresponding
set of eigenvalues are countable. According to [8], the following biorthogonal relations hold for
ki and k

∗

j :

〈A1ki,k
∗

j〉+ (νi + νj)〈A2ki,k
∗

j 〉 = 0, 〈A0ki,k
∗

j〉 − νiνj〈A2ki,k
∗

j〉 = 0.

These properties permit one to represent the solution in the form [8]

y =

∞
∑

i=1

[

(

〈A∗

1k
∗

i + νiA
∗

2k
∗

i ,y0〉+ 〈A∗

2k
∗

i , ẏ0〉
)

exp(νit)−
t

∫

0

〈f(τ),k∗i 〉 exp
(

νi(t− τ)
)

dτ

]

kiQ
−1

i ,

where

y = (u, θ) , y0 = (u0, θ0) , ẏ0 =
(

u̇0, θ̇0

)

, f = (ρb, ρs) , Qi = 〈A1ki,k
∗

i 〉+2νi 〈A2ki,k
∗

i 〉 .

The spectral expansions in complete biorthogonal systems of root functions (eigenfunctions and
associated functions) are of the same form and discussed in details in [8].

In the special case A1 = 0 and Re νi = 0, this representation can be written as follows:

y=

∞
∑

i=1

[

(

〈A∗

2k
∗

i ,y0〉 cos(λit)+
1

λi
〈A∗

2k
∗

i , ẏ0〉
)

sin(λit)−
1

λi

t
∫

0

〈f(τ),k∗i 〉 sin
(

λi(t−τ)
)

dτ

]

kiN
−1

i .

Here Ni = 2 〈A2ki,k
∗

i 〉 and λi = Im νi.

4. Solution in a special case

The mutually adjoint systems (1) are reduced to

µ∇2ui + (λ+ µ)∇∇·ui − α∇θi − ν2i ρui = 0, (1 + νiǫ)∇2θi − ν2i βθi − ν2i γ∇·ui = 0,

µ∇2u∗

i + (λ+ µ)∇∇·u∗

i + ν2i γ∇θ∗i − ν2i ρu
∗

i = 0, (1 + νiǫ)∇2θ∗i − ν2iβθ
∗

i + α∇·u∗

i = 0. (2)

Here β = κ/Λ, γ = α/Λ and ǫ = Λ∗/Λ. Now let us apply the Stokes–Helmholtz resolution

ui = ∇φi +∇×ψi, ∇·ψi = 0, u∗

i = ∇φ∗

i +∇×ψ∗

i , ∇·ψ∗

i = 0. (3)

where φi, φ∗

i and ψi, ψ
∗

i are scalar and vector functions, respectively. By substituting (3)
into (2), we obtain

(λ+ 2µ)∇2φi − αθi − ν2i ρφi = 0, (1 + νiǫ)∇2θi − ν2i βθi − ν2i γ∇2φi = 0, µ∇ψi − ν2i ρψi = 0,

(λ+ 2µ)∇2φ∗

i + ν2i γθ
∗

i − ν2i ρφ
∗

i = 0, (1 + νiǫ)∇2θ∗i − ν2βθ∗i + α∇2φ∗

i = 0, µ∇ψ∗

i − ν2i ρψ
∗

i = 0.

In this section, we assume that the desired solutions are generated by scalar potentials alone1

(ψi = ψ
∗

i = 0). It follows in a standard way that
(

φi

θi

)

=

(

̺
ς

)

Ξi.

1 This assumption, of course, restricts the problem under consideration to potential displacement fields, body
forces, and initial data. However, the rotational components of the above-mentioned fields do not interact with
the temperature field. Thus, the rotational components can be omitted in the case of purely thermal excitation.
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Here ̺ and ς are constants, Ξi is a solution of the auxiliary equation

∇2Ξi = ζiΞi

of the Helmholtz type, and ζi satisfies the algebraic equation (σ = λ+ 2µ):
∣

∣

∣

∣

σζi − ρν2i −α
−γζiν

2

i (1 + νiǫ)ζi − βν2i

∣

∣

∣

∣

= 0.

By solving the latter for νi, we obtain

νi1 =
ζǫ

4β
− ai1

2
−

√
ai2 − ai3

2
, νi2 =

ζǫ

4β
− ai1

2
+

√
ai2 − ai3

2
,

νi3 =
ζǫ

4β
+

ai1
2

−
√
ai2 − ai3

2
, νi4 =

ζǫ

4β
+

ai1
2

+

√
ai2 − ai3

2
,

where

ai1 =

√

pi1

3 3
√
2βρ

+ pi2 + pi3, ai2 = − pi1

3 3
√
2βρ

− pi2 + 2pi3,

ai3 =

(

ζ3ǫ3

β3
− 8ζ2σǫ

βρ
− 4ζpi0ǫ

β2ρ

)

/ (4ai1) ;

pi3 =
ζ2ǫ2

4β2
− 2pi0

3βρ
, pi2 =

3
√
2qi1

3βpi1ρ
, pi1 =

3

√

√

q2i0 − 4q3i1 + qi0, pi0 = −ζ(αγ + βσ + ρ);

qi1 = 3ζ2ρσ
(

4β + ζǫ2
)

+ p2i0, qi0 = 27ζ4ρσǫ2(βσ + ρ) + 2p3i0 + 9ζ2pi0ρσ
(

ζǫ2 − 8β
)

.

In the case of simple spectrum the eigenfunctions can be obtained as

ki,s = (ui,s, θi,s) =
([

1− βν2i,s/ζ + νi,sǫ
]

∇Ξi, γν
2

i,sΞi

)

,

k∗i,s =
(

u∗

i,s, θ
∗

i,s

)

=
([

1− βν2i,s/ζ + νi,sǫ
]

∇Ξi,−αΞi

)

.

Here s = 1, . . . , 4.
It is clear that the solution thus obtained depends on the boundary conditions for the auxiliary

scalar function Ξ. Consider the Neumann type boundary conditions n ·∇Ξ
∣

∣

∣

∂B

= 0. This

corresponds to the following boundary conditions in terms of the variables u and θ (where I is
the unit tensor)

n·u = 0, n·T ·(I − n⊗ n) = 0, n·∇θ = 0.

Now let B be a cube with edge length π, and let x, y, z be Cartesian coordinates. Assume
that the body force and the entropy production are zero, and so are the initial displacements,
velocities, and temperature rate; i.e.,

b = 0, s = 0, u

∣

∣

∣

t=0

= 0, u̇

∣

∣

∣

t=0

= 0, θ̇
∣

∣

∣

t=0

= 0.

The solution of the auxiliary problem is

Ξk = cosnx cosmy cos lz, ζk = −n2 −m2 − l2.

Let the initial temperature distribution be given by θ0 = H(z) − H(z − h), 0 < h < π, where
H(z) is the Heaviside step function. In this case only ζk = −l2 may be taken into account. The
normalising factors Qi,s are of the form

Qi,s = π3νi,s

(

−αγn4(νi,sǫ+ 2)− 2ρ
(

βν2i,s + n2(νi,sǫ+ 1)
)2
)

/(2n2),
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and non-zero expansion coefficients 〈A∗

1
k∗i + νiA

∗

2
k∗i ,y0〉 may be calculate as follows

Pi,s =
(

π2α
)

sin(hn)
(

βνi,s + n2ǫ
)

/n

Thus the solution of the corresponding initial–boundary value problem can be represented in
the form of a spectral expansion:

θ =
h

π
+

∞
∑

i=1

(Si,1 + Si,2 + Si,3 + Si,4) , u = kw, w =

∞
∑

i=1

(Wi,1 +Wi,2 +Wi,3 +Wi,4) ,

where

Si,s =
γν2i,sPi,s exp(νi,st) cos(nz)

Qi,s
, Wi,s =

(

βν2i,s/ζ − νi,sǫ− 1
) nPi,s exp(νi,st) sin(nz)

Qi,s
.

Obtained solution generalise the solution given in [9].
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