MPMM2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 788 (2017) 012050 doi:10.1088/1742-6596/788/1/012050

On stability of the solutions of inverse problem for
determining the right-hand side of a degenerate parabolic
equation with two independent variables

V L Kamynin and T I Bukharova

National Research Nuclear University MEPhI (Moscow Engineering Physics
Institute), 31 Kashirskoe shosse, 115409 Moscow, Russia

E-mail: VLKamynin@mephi.ru, TIBukharova@mephi.ru

Abstract. We prove the estimates of stability with respect to perturbations of input data for the
solutions of inverse problems for degenerate parabolic equations with unbounded coefficients.
An important feature of these estimates is that the constants in these estimates are written out
explicitly by the input data of the problem.

1. Introduction. Unique solvability of the inverse problem
In the paper we obtain the estimate of stability with respect to perturbations of input data for the

solution {u (t,x), p(t)} of the inverse problem for nonuniformly parabolic equation

u,— a(t,x)uxx +b(t,x)ux + d(t,x)u = p(t)g(t,x) + r(l,x), (t,x) eQ; (1)
with initial and boundary conditions
u(O,x) =u, (x), xe [O,l], u(t,O) = u(t,l) =0, te [O,T]; 2)
and the additional condition of integral observation
!
Ju(t,x)co(x)dngo(l), t€[0,T]; 3)

0
here 0 =[0,7]x[0,/], where T and / are some numbers.

In the setting of the inverse problem (1)—(3) one allowed the unboundedness of all the coefficients
of the equation (1) and the functions g(z,x), r(¢,x) in the right hand side of this equation as well as
degeneration of the leading coefficient a(t,x).

The questions of unique solvability of the problem (1)—(3) were considered in [1] (see also [2]).

Note that inverse problems for degenerate parabolic equation are important in applications, in
particular, they arise in the study of models of price formation for options in financial markets (see, for
example, [3-5], etc.).

In this paper we use Lebesgue and Sobolev spaces with corresponding norms in usual sense, and all
equalities and inequalities are satisfied almost everywhere.

We also need the well-known the Poincare —Steklov inequality which for =1 is of the form
2 I?
||Z||L2(o,1) < D)

2
Ly(0.1)°

vzew! (0, 4)

z
X
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We assume that the functions occuring in the input data of the problem (1)-(3) are measurable
and satisfy the following conditions:

1

0< ; ——cL 1 < — <a,; A
a(t,x), (I,X)EQ, a(tax)aa(t’x) € q(Q)a q> s a"Lq(Q) a]’ a Lq(Q) a2’ ( )
b (6,x) d*(t,x)
b d L_(0,T;L,(0,/
(t:x)a (f,x)e oo( ) 2( B ))9 (t x) B a(t,x) w(Q)) ( )
B
2 . d2 .
"b" oeroz))—Kb’ d” H(0.T3Ly(0.0) = <Kp | — <Ky, | <Ky
L,,(0) Ls(0)
2
t,x
g(t,x), r(t,x)eLw(O,T;L] (O,Z)), er‘(OqT;L](OJ))SK“ ‘i(t(x ) Lw(O,T;L] (0,1)),
: ’ ©)
g <k, 20 o) 18 <k
a Lo (0.7:21(0.1)) a(t,x) a L(0)
0
u, (x)e W, (0 I)' (D)
o(1), ¢'(1)eL(0.T), Jo'(1)], (E)
o(x)eL,(0.0), (aw), €L, (0.:L, (0, )) ( ) (%)) 00 =0,
ol 0 <Ko (@)1, 00y <Ko "
Ly(00) = @’ L (0.T:15(0.1))
1
[e(tx)o(x) dy =g, >0; @)
0
1
go(O)zJuo(x)a)(x)dx. (H)
0

Here a,, a,, K, K, K,, g, =const>0, K,, K,,K,, K;,K,, K, =const >0.
Definition 1. By generalized solution of the inverse problem (1)—(3) we mean a pair of functions
{u(t,x),p(t)} such that

1) u(e.x) €W (Q) AW (0.1), 51, altxc, (l:’ ;e h(0) plr)eL. (0.T);
a(t,x

2) this pair satisfies equation (1) almost everywhere in Q;

u (t,x) —u, (x)| dx=0;

4) equality (3) is satisfied at each point 7 €[0,T].

]
3) lim
t—>0" 0

Under the assumptions (A)—(H) in the paper [1] (see also [2]) we proved the following theorem of
existence and uniqueness of the generalized solution of the problem (1)—(3).
Theorem 1. Let conditions (A)—(H) are satisfied. Set

2 3K
q =— 29 1_3( K %Kd} p=t—= “(K +K,K, +KKM\/_J y=4p>.  (5)

g+1’ ’ A
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Then there exists a unique generalized solution {ﬁ(t,x), f?(t)} of the inverse problem (1)-(3),
ii(¢,x)eW'*(Q) and the following estimates hold:
q

. 27712 ") .
Lor) < . { [K +K,K,+K,K, IJ ( ||u0||L2(OJ) +3K,) +K’ +KwK,}, (6)
~ 2 *
0<t<T e (t") Ly(0.,1) =¢ “T( ”uo "L2 0.) (0 7) 6K, )’ )
ﬁxx iq* (0) + ﬁt iq* (0) < GZAT (a] +a2 ( ||u0||L2 0,/) »(0,T) + 6K ) (8)
2. Main result
Now let us obtain the estimates of stability.
Theorem 2. Consider the following two inverse problems in Q:
u, — a(t,x)uxx +b(t,x)ux + d(t,x)u = p(t)g(j) (l,x) + V) (l,x), 9)
u(0,x)=ul" (x), u(t,0)=u(t,1)=0, (10)
!
Ju(t,x)a)(x)dxz(p(j)(t), (11)
0

i=12.
Suppose that for these problems conditions (A)—(H) hold. Let {u(j ) (t,x) (t)} i=1,2 bethe

corresponding solutions of these problems. (These solutions exist and are unique by theorem 1.) Then

the following estimates hold:

yT/2
- p? <2 K v KK, KK, = |x
Ly,(0.T) g, \/5
12
M _ @Y M _ @)
0 _ @ (" -4") (1" -47)

x| ) -] 461 Hp x + + (12)

1,(0.0) (0.7) a a

Ly, (0,7:11(0.7)) L(0)
o_,2 K »,? m_,0 K o _.,.02
M (o,r)+ o|P L(0,7) & & Lw(O,T;L](O,l))+ o | : Lw(O,T;L](O,l))}’
sup u(])(t )—u(z)(t )2 + u(l) —u(z) ’ + u(l) —u(z) ’ <
0se<T O pey T ) 0T (o)
2 2
<e(1 p— K1 - p® 127 p® 13
( +a,+a )[ Uy, — Uy, LZ(O,[)+6 P p Lo + p OT)x (13)
2 2
(g(l) _ g(z)) (r(') _ r(Z))
X |[~——— +12
a a
L, (0.1 (0.1)) L(0)
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Proof. Set
V" (t,x) =" (t,x)—u(2) (t,x), o (t) = p(])(t —p(z) (t), v (x) =u(()])(x)—u(()2) (x),
q/(t)=¢(‘)(t)—¢(2)(t) p(t,x)=g" (t,x)-g? (1,x), o(t,x)=r" (1,x) - r? (1,x),

)=jg Jo(x)dx, j=1.2.
Then the pair {v’ (Ot,x) 5 (t)} is a solution in O of the inverse problem
v, —a(t.x)v,, +b(t.x)v, +d (t,x)v=5(t)g" (t.x)+ p? (£) p(t.x) + & (£.x), (14)
v(0,x)=v, (x), ¥(1.0)=v(t.1)=0, (15)
jv(t,x)a)(x)dxzt//(t). (16)

0
Let us multiply equation (14) by a)(x) and integrate the resulting relation over the segment [O,Z ]

Taking into account conditions (15), (16) and integrating by parts using the assumptions (E)-(D) we
obtain the relation

5" (1)=

G(+(t) !((aw)x +bo dx+!dwv*dxw'(t)_p(z)(t)!pw dx—law dx}. (17)

Let us introduce the operator B: L, (0, T ) ->L, (0, T ) by the formula

B(5)=G(+(I)ﬁ((aw)x+ba))vx dx+£dwv dx} (18)

0

where v(t,x) is a solution of the direct problem (14), (15) with a given function o (t) in the
right-hand side of equation (14). Then we derive from (18) that & (t) is a solution of operator

equation

5(1)=B(8)(1)+— { i( )p+o)o dx} (19)

Let us introduce in space L, (0,7) the norm
[2], =[e

, zeLw(O,T),

Ly,(0,T)
where y is defined in (5).

Then by analogy with the proof of theorem 3.1 from [2] we obtain that the operator B is a contraction
operator in L, (0,7) with chosen norm | - |, and the following estimate

“3(5(1))(1‘) - 8(5(2) )(z)Hy < %“5(1) (¢) _s®

s"(1), 8*(r) e L, (0,T), hold.
Denote by w, (t,x) the solution of direct problem (14), (15) with & (t) =0 in the right-hand side of

(20)

(14). Then for w, (t,x) we have the estimate of the form (7) which in our case looks as follows

J. (21)
L(0)

2
o

a

2 p2

a

<e 22T +

sup |w0x ,)

il
0<1<T L,(0.7) 0lly(0.)

L (0,7) L (0,7511(0,1))
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Let & (t) =0 be the zeroth approximation of the solution of equation (19) when applying the method
of iterations. Then from formula (18) in view of conditions (B), (F), (G) and inequality (4) we obtain

|B(5)(z |<glo(1< +K,K, +K, KM\FJHWW ) (22)

Ly(0,0) "

Let ¢, (t) be the first approximation of the solution of equation (19) when applying the method of

iterations. Then using the well-known estimate of the n-th approximation of the solution in the
iterative process (see, for example, [6], p.43) and also (20) we have

' ]
Is,(1)-o" (1)), <|B(0 +%+$£(p(2)(t)p+a)wdx

whence in view of (22) and (21) we obtain the inequality

4

. 2
o . sg—{ (K +K,K,+K, Kw\/,J
1/2
,02 o
||v0|| 04) +6T Hp X |— + 6||— +
~(0.T) a L (0,741 (0.1)) a L(0)
+||W " (0.T) Hp (0.7 w ”'D”Lw(o,r;L] (0.7)) + Kw ||G||L30(0,T;L]((),l))}'

This inequality obviously implies estimate (12). Note that the equation (14) is similar to the equation
(1) with replacement of the function r(t,x) on p(z)(t) p(t,x)+a(t,x) (there are three terms in the

right-hand side of (14), not two as in the equation (1)). So with this in mind, estimate (13) follows
from estimates (7) and (8).
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