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Abstract. The analytical solution of the second Stokes problem  is found. The case of the 

variable amplitude of fluctuation of a surface is considered. The linear kinetic equation with 

boundary conditions is derived. Eigen solutions of the equation are found. Properties of 

dispersion function are investigated. The general solution of the kinetic equation with boundary 

conditions in terms of the eigen solutions decomposition is composed. 

In the last time the second Stokes problem has a great interest of scientists. It is connected to 

development of technologies and in particular nanotechnologies. There are many articles devoted to 

the second Stokes problem  [1-5], where the numerical solution is given [3-5]. The problem has  the  

analytical solution is shown in the present work.  In this article we continue  works by  V A Akimova, 
A V Latyshev and A A  Yushkanov,  in which the second Stokes problem has solution in case of the 

constant amplitude of fluctuation of a surface [1]. In this paper we consider  the variable amplitude of 

fluctuation of a surface.  

Let one-atomic rarefied gas fills half-space 0x . Surface makes harmonical oscillations 
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We will consider a model kinetic BGK equation (Bhatnagar, Gross, Krook) 



ff

x

f

t

f eq

x












v ,  

where  ν = 1/τ is the collision frequency of gaseous molecules, τ is the time between two consecutive 

collisions of molecules, 
eq

f  is the equilibrium distribution function,  
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Here ),( xtu
y  is the mass velocity of gas, k is the Boltzmann constant, m is the mass of molecule of 

gas,  n is the concentration of gas,  T is the temperature of gas. 

Considering, that the velocity of molecule of gas much less than the thermal velocity of molecule 

Ty
xtu ),(

11
, where   1

T   is the thermal velocity of molecule of gas, then problem can be 

linearized. Concentration of gas and temperature are considered as constants. We will search  the 

distribution function in the form 
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We introduce dimensionless parametres: dimensionless velocity of molecules 
T
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v
vС  ,
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1
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dimensionless time tvt 
1 . 

Making necessary calculations, we obtain the kinetic equation 
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with the boundary conditions 
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and boundary conditions (2) can be written as 
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We will seek the solution to equation (3) in the form 
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Here    is the spectral parameter or the separation parameter, it is complex one. Using these equalities 

(4), we obtain from equation (3) the characteristic equation 
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where   , , δ(x) is the Dirac delta function, )(z  is the dispersion function, which 

present in the form 
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Using  the Sokhotsky formulas [6], we will find boundary value of dispersion function 
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Let’s separate at function )(  the real and imaginary parts (figure 1 and 2) 
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It’s clear that the function
 

)(
0
  has two complex zero 0

 , 924.0
0
  on the real axis, which 

differing only signs. 

 
Figure 1. Real part of dispersion function )()(

02
   on the 

real axis. Curves 1, 2, 3 correspond to values of parameter 

.1,5.0,0
2
  

 

 

 
 

Figure 2.  Imaginary part of dispersion function )()(
1

 s  

on the real axis. Curves 1, 2, 3 correspond to values of parameter   

1,5.0,0
1
 . 
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Let’s expand dispersion function in asymptotic series on negative degrees variable z at the vicinity 

of infinitely remote z 
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From expansion (5) it is visible, that at small values  dispersion function has two complex zero 

differing only signs 
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Considering a  family of curves on the complex plane  
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Making necessary calculations  and considering principle of argument, we obtain that 
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where )(G   is the index of function
 

)(G , i.e. is the number of revolution,  which are  made by 

curve in the positive direction from the beginning of coordinates. 

We will construct the frequency plane ),(
21

 ( figure 3).
  

 
Figure 3. Regions  D  and D . If  D),(

21
 then 1 , 

 D),(
21

 then 0 . 

 

On the frequency plane ),(
21

  there is such region D , that for the points ),(
21

 , lying   in 

this  region, the index of the problem  is equal to unit: 1),(
21
 ,  D),(
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, and the points 

),(
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 , belonging region 
D , the index of the problem  is equal to zero, i.e. 0),(
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. The border of  this  region 
D is called the line of critical frequency.  

The region  D is built following in the way 
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If  D),(
21

, then the dispersion function has zero equal two, and ifи  D),(
21

, then the 

dispersion function has no zero. 

Let’s separate at function )(G  the real and imaginary parts and  build the covers )(  on the 

frequency plane, which are defined by the following equations (figure 4 и 5) 
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21
 , then curve  )0(  once cover the beginning of coordinates. The 

function )(
0
  has single zero 924.0

0
  on the real axis. 

 
Figure 4. Curve )(  cover the beginning of coordinates, when

 
 D),(

21
 The index of function )(G  is equal to unit and 

dispersion function has zero equal two. 

 
Figure 5. Curve )( doesn’t cover the beginning of coordinates, 

when
 

 D),(
21

. The index of function )(G   is equal to zero 

and dispersion function has no zero. 

 

At  D),(
21

 the discrete spectrum is the empty set. At  D),(
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  the characteristic 

equation has  two solutions, provided the eigen functions of the characteristic equation 
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and has two  eigen solutions of the kinetic equation 
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At the heart of the analytical solution of boundary problems the kinetic theory lays the solution of 

the homogeneous boundary value Riemann problem [6] with coefficient )(/)()(  G  
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Homogeneous boundary value Riemann problem (6) is called also the factorization problem of 

coefficient )(G . Its solution [5], has the form  
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In the case, when the index of problem is equal to unit. The solution of Riemann problem (6) is 

given by a formula 
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Here )(ln G  is the principal branch of logarithm, fixed at zero by condition lnG(0)=0, angle is the 

principal value of argument.  We will mark that 0)(ln G . 

We can seek the general solution to problem with the  boundary condition in the form 
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)(a   is the coefficient of the continuous spectrum, a0  is the coefficient of the discrete spectrum.  

Adding eigen functions of the characteristic equation in the formula (7), we can write it in a 

classical form 
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where )(
  is the Heaviside function: 0,0)(,0,1)( 


 . 

This expression is proved with the help analytical methods [6], as shown in article [1, 7].  

Conclusions. In this work the second Stokes problem in the case of the variable amplitude of 

fluctuation of a surface is formulated.  Zero of the dispersion function are calculated and investigated.  

The region of critical frequency is built. Eigen functions of the characteristic equation and eigen 

solution  of kinetic equation ate found. The general solution to problem with the  boundary condition 

can be present the form of the sum of the discrete  solution and the integral over the continuous 

spectrum of eigen solutions corresponding to the continuous spectrum is shown. 
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