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Abstract. The feedback control algorithm is developed to suppress oscillations caused by high
resolution schemes. The stable propagation of the shock of the nonlinear advection equation
is studied using the Lax-Wendroff and Warming- Beam second- order schemes. It is shown
that the addition of one and the same control artificial term in both schemes results in efficient
suppression of oscillations. The switch on/off the control is studied to demonstrate the role of
the control in the stable monotonic shock propagation.

Introduction

An important problem in utilization of higher-order shock capturing schemes is their ability to
maintain the total Variation Diminishing (TVD) condition, see. e.g., [1]. In other words, the
shock profile should not contain oscillations caused by the features of the scheme. Second-order
schemes, e.g., the Lax-Wendroff and Warming-Beam schemes, are not TVD schemes, and an
improvement of the numerical algorithm is needed.

As noted in [1] natural way to suppress the oscillations is to add artificial viscosity term
in the scheme keeping approximate consistence with the original equation. It turns out that
artificial viscosity may help to suppress oscillations caused by the dispersion of the scheme,
however, it also produces unnecessary smearing of the front of the shock. Reducing of smearing
requires further development of artificial viscosity by so-called adaptive viscosity [2, 3] which is
introduced only in the areas where it is necessary to suppress dispersive oscillations. Despite
some progress in this direction problem of adding optimal amount of viscosity is still difficult [1]
while improvements are rather complicated [2].

Another modification is utilization of the so-called limiters whose role is to act as a nonlinear
switching between numerical methods applied for equation under study. A variety of limiters
may be found in the literature, see, e.g., [1, 4, 5, 6, 7] and references therein. There is no
universal limiter, and their use is computationally expensive [2]. A TVD flux-limiter may
be developed for nonlinear hyperbolic equations [7], it improves the similarity with moving
monotonic discontinuity in comparison with, e.g., the Minmod limiter, however, there still
remains small differences between required and numerically obtained shocks.

Method of equivalent equation (or differential approximation) [8, 9] may be used to analyze
both artificial viscosity [9] and limiters [6]. Also asymptotic and exact solutions of the equivalent
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equation may help for finding suitable artificial additional terms [10, 11, 12]. However, equivalent
equations are usually very complicated for simulations of nonlinear equations and coupled
equations that makes their analysis impossible.

Recently [13, 14], it was shown that the feedback control may provide stable propagation of
the waves with monotonic shape for the sine- Gordon equation. It was found that oscillations
caused by imperfect initial conditions may be suppressed by inclusion of additional control terms
in the equation. An additional control term may be added to the discrete scheme of equation
following the methods of control [15, 16], however, the addition of the term should be justified.
It may be done using the speed-gradient control approach [15].

In this paper, a distributed feedback control algorithm will be developed to achieve suitable
monotonic moving shock wave solution to the nonlinear advection equation solved by the second-
order numerical methods. The paper is organized as follows. In Sec.1 the known Lax-Wendroff
and Warming -Beam schemes for the advection equation are presented. Their utilization leads
to oscillatory shock wave solution. Next Sec.2 is devoted to the development of the control
algorithm, and artificial additions to the schemes are found. In the next Section, numerical
simulations are performed for the control that may be switched on/off at any time. Conclusions
summarize the paper.

0 5 10 15 20
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

u

t=0

5 10 15 20
x

0.2

0.4

0.6

0.8

1.0

1.2

u

t=5

5 10 15 20
x

0.2

0.4

0.6

0.8

1.0

1.2

u

t=10

5 10 15 20
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

u

t=15

Figure 1. Arising of oscillations at the wave front for the LW scheme. Shown by dashed line is
propagation of shock wave (2) with velocity c = 1/2.

1. Statement of the problem

Consider the nonlinear advection equation,

ut + u ux = 0. (1)
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Figure 2. Arising of oscillations at the wave front for the WB scheme. Shown by dashed line
is propagation of shock wave (2) with velocity c = 1/2.

whose solution behaves as
u → 1 at x → −∞,

u → 0 at x → ∞.

The initial condition has the form of discontinuity,

u0 = 1 at x− x0 ≤ 0, u0 = 0 at x− x0 > 0, (2)

x0 is a constant accounting for the position of discontinuity. Propagation of this discontinuity
is carried out with velocity equal to the average of the values before and after discontinuity [17]
and equal to c = 1/2 in our case.

Correct numerical description of the shock wave propagation requires use of the higher-order
schemes, e.g., the Lax- Wendroff (LW) or Warming- Beam (WB) schemes. However, these
schemes possess their internal dispersion that results in an appearance of oscillations on the
wave front. In particular, the LW scheme for Eq. (1) is

un+1
i − uni

△t
+

1

2△x

(

fn
i+1 − fn

i−1

)

−
△t

2△x2

(

ui+1/2

(

fn
i+1 − fn

i

)

− ui−1/2

(

fn
i − fn

i−1

)

)

= 0, (3)

where fn
i = (uni )

2/2, u2i±1/2 = (uni±1 + uni )/2, △t and △tx are the temporal and spatial steps

respectively. Simulations of Eq. (3) were realized using the Wolfram Mathematica programm.
One can see in Fig. 1 that oscillations appear at the upper side of the wave front as time goes
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Figure 3. Control action (8) for both the LW and WB schemes. Shown by dashed line is
propagation of shock wave (2) with velocity c = 1/2.

on while the slope and the velocity of the wave are similar to those of the desired wave shown
by dashed line.

For the WB scheme one obtains

un+1
i − uni

△t
+

1

2△x

(

3(fn
i − fn

i−1)− (fn
i−1 − fn

i−2)

)

+

△t

2△x2

(

ui−3/2(f
n
i−1 − fn

i−2)− ui−1/2(f
n
i − fn

i−1)

)

= 0. (4)

Simulations of Eq. (4) reveal oscillations at the lower side of the front of the shock as shown in
Fig. 2. Again the slope and the velocity of the wave are similar to those of the desired wave
shown by dashed line.

There is a need in a modification of the schemes that keeps the steepness of the profile of
the shock and its velocity but suppresses parasitic oscillations caused by the scheme (shock
capturing).

2. Feedback speed- gradient control method

To suppress scheme oscillations caused by the LW and WB schemes, a control algorithm is
developed. Let us add an artificial control function, w(x, t) in Eq. (1),

ut + u ux + w(x, t) = 0, (5)

The distributed error of the shape of the wave is

e(x, t) = u(x, t)− u0(x, t). (6)
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Figure 4. Control action (9) for the LW scheme switched on at tb = 5. Shown by dashed line
is propagation of shock wave (2) with velocity c = 1/2.

where u0 is the desired wave profile, e.g., moving discontinuity like Eq. (2). Then the objective
functional Q is

Q(u) =
1

2
e(x, t)2. (7)

Let us introduce an auxiliary control goal: to diminish the functional (7). However, it does
not depend explicitly on the control function w. To involve the dependence, consider the first
derivative of Q with the use of Eq.(5):

Qt(u) = e(x, t)et(x, t) = − e(x, t)(uux +w)

Then ∂Qt(u)/∂w is evaluated to characterize decrease in Qt(u), and the distributed control
function w is assumed to be
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Figure 5. Control action (10) for the LW scheme switched on at tb = 5 and switched off at
tf = 10 . Shown by dashed line is propagation of shock wave (2) with velocity c = 1/2.

w(x, t) = −γ(u(x, t)− u0(x, t)), (8)

γ > 0 is the parameter of the algorithm. The algorithm does not contain derivatives of the
function u and may be easily incorporated as artificial addition in both Eqs. (3), (4) in one and
the same form.

The control may be switched on at some time t = tb. In this case the distributed control
function w is

w(x, t) = −γ(u(x, t)− u0(x, t))H(t − tb), (9)
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where H is the unit-step function. Similarly, the control may be switched off at some time
tf > tb, in this case we get

w(x, t) = −γ(u(x, t)− u0(x, t))H(t − tb)H(tf − t). (10)

3. Shock capturing by control

Let us choose the target function u0 in the form of shock wave (2) propagating with velocity
c = 1/2. Then LW scheme (3) modified by addition of control function (8) at γ = 0.5 results
in description of stable propagation of monotonic shock shown in Fig. 3. Similar results are
obtained using simulations of the WB scheme (4) modified by addition of control function (8).
Due to definition of the control function, it is small when u is almost equal to u0 and tends to
zero as soon as these functions coincide. Therefore, the addition of the control function gives
rise to a small deviation from the original discrete equations. However, even very small control
function term does not mean switching off the control.

To see it, let us consider first the control which is realized according to Eq. (9). One can
see in Fig. 4 for the LW scheme that oscillations are developing by t = tb when the control is
switched on. Then oscillations are suppressed by the control very fast, see the second row in
Fig. 4, and again stable propagation of the shock carries out, see last two sketches in Fig. 4.
Similar behavior is observed for the WB scheme.

Further, the control may be both switched on and switched off using control function in the
form of Eq. (10). One can see in Fig. 5 that oscillations recover after switching off the control.
Therefore, despite the control term is very small after coincidence of the wave profiles after
t = 5, it should be kept to support further stable propagation of the monotonic shock.

4. Conclusions

The developed feedback algorithm provides fast and efficient suppression of the scheme
oscillations. The algorithm does not contain derivatives that makes it universal for different
schemes. The structure of the control function results in very small addition to the scheme in
the areas where the numerical and desired wave profiles coincide, then the equation with control
slightly deviates from that of without control. The method does not require knowledge of the
exact solution since the desired function is chosen according our choice.

The LW and WB schemes were used to demonstrate the efficiency of the method. Certainly
it may be extended to more advanced finite-difference approaches using the procedure explained
in Sec. 2. Also the algorithm may be extended by modification of the higher- order schemes
used for the coupled gas dynamic equations and to two-dimensional problems although, in the
last case, it may be difficult to get the reference solution for the control function. It will be the
subject of future work.
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