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Abstract. A method of forced localization of non-linear wave by a feedback control is
developed for coupled equations accounting for non-linear dynamic processes in complex lattices.
It is shown, that the control of the shape and velocity of the wave function of macro-strain allows
to achieve localization of the shape of the function describing variations of defects in the lattice.
Moreover, change of the sign of the amplitude of the last wave may be achieved by variation of
the parameters of the control function but independent of the initial conditions.

Introduction

Exact localized traveling wave solutions to non-linear wave equations may be found by various
methods, see, e.g., [1, 2]. Their existence results from a balance between contributions of the
terms of the equations which in turn reflect a an influence of physical factors such as nonlinearity,
dispersion, dissipation, diffraction. However, existence and stable propagation of localized waves
also depend on the choice of initial and boundary conditions. The consistent initial conditions
should coincide with the exact solutions and their corresponding derivatives at ¢ = 0. For
coupled equations, an extra factor concerns relative positions of the inputs for the coupled
variables [3, 4, 5]. Variations in the shape of the initial conditions and their initial velocities
result in failing of localization, arising of oscillations, serious variations in the shape of the waves.

Among the methods allowing support of stable propagation of localized waves one can note the
control methods [6, 7, 8]. Recently a distributive feedback control algorithm has been developed
for single non-linear equations [9, 10, 11]. It was found that both the kink-shaped and envelope
wave solutions may be achieved for the sine- Gordon equation if both the tendencies to a desired
shape and velocity of the wave are included into the control function. The control function is
physically reasonable for the sine- Gordon equation describing a crystalline lattice continuum
limit if it is related to an external loading. When the wave achieves the shape and the velocity
of the desired or target function, the control function becomes very small. Thus its addition to
the equation does not seriously change it.

In this paper, a feedback control algorithm is developed for non-linear coupled equations
arising for continuum description of highly non-linear dynamic processes in complex lattices
[12, 13, 14, 15]. The only one function may be physically reasonable controlled - the function of
macro-strain. Another function in the equations accounts for internal variations in the crystalline
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Figure 1. Initial profiles, dashed line for u, solid line for v: a) x1; = x12 = 65; b) x1; = 65,
Tr12 = 40.

structure. In Sec. 1 the equations and their known exact traveling wave solutions are discussed.
Special attention is paid on variations in the solutions when the positions of the inputs for
the functions in the equation do not coincide. Next section is devoted to application of the
feedback distributive control algorithm for the macro-strain function and numerical solutions
demonstrating recovering of the localization of directly non-controlled function of internal
variation in the crystalline structure. Also change of the sign of the amplitude of the localized
wave out of the control is achieved by modification of the control of another function in the
equations.

1. Non-linear coupled equations for complex lattices
Recently nonlinear coupled equations were obtained in Refs. [12, 13, 14, 15] to account for
highly nonlinear dynamic processes in crystals in the continuum approach,

Vgt —C%vm = ;(cos(u))m, (1)

Ugt — CPUgy = i(Sv — P)sin(u). (2)

Here v is longitudinal macro-strain, u is micro-displacement characterizing movement of defects
in a di- atomic crystals [13, 14] or an influence of an additional rotational degree of freedom in
an atomic chain [12].

Exact localized traveling wave solution represents coupled functions u, v [15],

A
~ Qecosh(k (z —Vt—azp1))+1’

v

2

2 *
u = = arccos (M + 1) , (4)

where v = v* and the parameters are

4 22?2 P
p(CO+CL_V2) CL+CO_V2 Cl—V2

One has to note that initial positions of both waves are defined by one and the same parameter
x11, see Fig. 1(a), and their phase velocity V is the same. Also the function u may have an
amplitude of either sign. The initial conditions may be chosen in the form of exact solution for
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Figure 2. Evaluation of the waves at 17 = 65, x12 = 40 without control. Times are noted at
corresponding maxima/minima of the wave profiles.

v (3), but with initial function for v with

_ A -
~ Q cosh(k (x —Vt—uay))+1’ (5)

U*

where z;; may be chosen not equal to 11, say, equal to z12. This is shown in Fig. 1(b).
Numerical simulations in [3, 4, 5] revealed failing of stable propagation of the exact traveling
wave solution (3), (4) at initial condition with v* defined by Eq. (5). In particular change of the
sign of the amplitude of the wave u happens depending on the difference between x1; and x1s.

Consider the case with the values of the coefficients ¢;, = 1.6,¢, =2,¢cg=1,S=1,P=1,p=
1 and with the values of the parameters of the initial conditions V = 1.3,x11 = 65, x12 = 40.
Numerical simulations are performed using the NDSolve tool of the Wolfram Mathematica 11.
Shown in Fig. 2 is the evolution of the waves that demonstrates an influence of the difference
between initial positions on stable propagation of localized waves. Left profiles correspond to
the initially mutually spaced localized inputs. One can see variation in the amplitudes for the
wave v and appearance of oscillations. The profile for the wave u suffers even temporal change
of the sign of the amplitude. Finally the maxima of the wave come to the same position, and
the waves propagate together with one and the same velocity. Similar behavior is observed for
negative amplitude input for wu.
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Figure 3. Support of the waves localization by the control. Times are noted at corresponding
maxima/minima of the wave profiles.

2. Control of localization of the coupled waves

Physically reasonable control concerns only the macro-strain function v that may be explained
as an external loading. The control of the internal structure variable u is unlikely. Then a
control function w(z,t) is introduced only in one equation (1),

S
Vit — Cr Uy = ;(cos(u))m + w(x,t), (6)

while Eq. (2) does not contain any control term. The function w controls only the behavior of
the function v.

Following Refs. [9, 10, 11] let us choose the goal function in the form of exact solution for v
(3), but with initial phase defined as z;; in Eq. (5). The function v} (z,t) is defined as the first
temporal derivative of Eq.(5). Then one defines

e(x,t) =v(x,t) —v*(x,t), (7)

er(x,t) = vz, t) — vf (z,1). (8)
and

e(x,t) = ae(x,t) + e, t), (9)



MPMM2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 788 (2017) 012029 doi:10.1088/1742-6596/788/1/012029

4
2.5
0 35 70 105 140 175
2.0
1.5
1.0
0.5 VL
) w w i
E U 100 200 300 400
-05

Figure 4. Change of the sign of the amplitude of localized wave due to the control. Times are
noted at corresponding maxima/minima of the wave profiles.

Like in [9, 10, 11], the function w is defined as

w(z,t) = —ye(w, t), (10)

where v > 0.

Numerical simulations are shown in Fig.3 for the choice of the control parameters v =
0.16, « = 160. Comparing with Fig.2, one can see recovering of stable propagation of localized
wave u with no more variations in the sign of the amplitude, and no more variations in the
amplitude of v is seen. The oscillations almost disappear on the profiles of both functions.

One can see an interval for evolution of u in Fig. 2 when the amplitude changes its sign.
However, then the original sign of the amplitude is recovered. One can switch on the control at
time corresponding to the interval of the negative sign by modifying the control function,

w(z,t) = —ye(z, t)H(t — tp), (11)

where H is the unit-step function, t; is time for switch on. Shown in Fig. 4 is numerical
simulations with modified control function (11) and with ¢, = 19. One can see that the wave
u changes its sign and continue to propagate like in the case without control when the initial
condition is chosen with negative sign, see Fig. 1. The choice of t;, is sensitive to small variations.
In particular, choice of t;, = 18 results only in a more longer negative amplitude wave propagation
than in Fig. 2 with forthcoming recovering of the sign of the amplitude. An increase in the
value of tp, say, t, = 23, gives rise to the scenario similar to that shown in Fig. 3 without change
of the sign of the amplitude of wave wu.
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3. Conclusions

A distributive feedback control may support localization of nonlinear coupled equations even if
only one of the functions is controlled. The sign of the localized wave may be changed by the
control independent of the initial conditions. For the equations considered, it means that an
external loading plays the role of the the control of the shape and velocity of the macro-strain
wave in the lattice, while another coupled function accounting for the movement of defects of
the crystalline structure also suffers serious variations.
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