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Abstract. In this work new mathematical model of long wave propagation on water surface with ice
cover is proposed. The model of thin elastic plate is used to describe ice layer movement. Equation for
ice cover contain additional term to takes into account dissipation effects in the ice cover to explain wave
attenuation. Proposed model was reduced to one nonlinear evolution equation for water level perturbation.
The expression for wave energy was obtained under assumption of long waves. Proposed model is numerically
studied, energy of system is computed. Obtained results are compared with results of suggested before model
that takes into account the flow law of Glen.

1. Introduction
The process of attenuation of surface wave under ice layer is well studied at the present
time. There are some models for description energy loss in the system ice-water under wave
propagation. Almost all proposed models consider system under linear theory approximation.

The one model was proposed by Wadham [1]. He takes into account the Glen law to
describe energy lose in ice layer due to creep. He consider the propagation of a one-dimensional
monochromatic wave propagating at right angle to the ice edge. As a result, he obtain that
energy of wave is directly proportional to expression(

1

(n− 1)Sx+ 1/An−1i

)2

(1)

where S is some constant depending on system and wave properties, Ai is initial amplitude of
wave and n is power in flow law of Glen. Wadham find that attenuation rate of wave is best
fitted by exponent n = 3.

Another approach to problem was proposed by Weber [2]. He assume that ice floes very small
and treat ice field as a viscous Newtonian fluid. Moreover he studies case of infinite rotating
ocean. His model fit well field data from the marginal ice zone.

Considering only linear effects gives good approximation for wave propagation over few tens of
wavelengths [3]. But waves in ocean can propagate over longer distance and nonlinear effects will
accumulate and affect the wave form. So a nonlinear model for describing considered problem
is needed. The model that takes into account Glen flow law proposed by Wadham can not be
directly applied in this case.

We consider a problem of long wave propagation under ice layer. In this work the new
phenomenological model is proposed. Thin plate model is used for ice layer. Proposed model
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takes into account creep effects in ice layer by adding new term in equation for its motion. The
new term in equation is chosen in such a way that derived equation for water level perturbation
is dissipative.

In nature the waves in open ocean usually are long, so perturbation method can be applied
to reduce origin system of equations to simpler problem. In section II the nonlinear evolution
equation that describe water level perturbation is derived. The expression for the total energy
of wave in terms of water level perturbation written in non-dimensional variables is obtained.
Section III contain description of numerical algorithm for solving boundary value problem for
derived equation. In section IV boundary value problem is solved numerically. The behaviour
of solitary wave is studied, time dependence of the wave energy is calculated.

2. Model
2.1. Equation derivation
Let us consider the potential incompressible flow of ideal fluid under thin elastic plate over flat
bottom. This motion is described by the following equations [4, 5]

ϕxx + ϕyy = 0, −∞ < x < +∞, 0 < y < h(x, t),

∂ϕ

∂y
= 0, y = 0,

ηt + ϕxηx = ϕy, y = h(x, t),

ϕt +
ϕ2
x + ϕ2

y

2
+ gy +

P

ρw
= gh0 +

P0

ρw
, y = h(x, t),

Eh3i
12(1− ν2)

ηxxxx − hiσxxηxx = P − P0 − ρihiηtt − κηxxx.

(2)

Here ϕ is the velocity potential of the liquid, h0 is depth of liquid, η is the deviation of liquid
from its equilibrium position (h(x, t) = h0 + η(x, t)), ρi and hi are the density and thickness
of the ice, g is the gravitation acceleration, P0 is the atmospheric pressure, ρw is the density
of water, P is the external load, E is the elastic modulus and σxx = const is the component
of stress tensor. We introduce the dissipative term −κηxxx to the right part of the equation
of plate motion, so κ is the phenomenological coefficient describing dissipation of wave energy
under ice cover due to bend.

After changing of variables in (2)

x = lx′, y = h0y
′, η = aη′, t =

l

c0
t′, ϕ =

gla

c0
ϕ′, (3)

where l is a wavelength, a is a characteristic amplitude and c0 =
√
gh0 is a phase velocity in the

linear approximation, we obtain the following problem

µϕxx + ϕyy = 0, −∞ < x < +∞, 0 < y < 1 + εη(x, t),

∂ϕ

∂y
= 0, y = 0,

ηt + εϕxηx =
ϕy

µ
, y = 1 + εη,

ϕt +
ε

2
ϕ2
x +

ε

2µ
ϕ2
y + η + δηtt − βηxx + τηxxx + γη4x = 0, y = 1 + εη.

(4)

Here ε, µ, δ, β, τ, and γ are small parameters of the same orders defined by the following
expressions

ε =
a

h0
, µ =

h20
l2
, δ =

ρihih0
ρwl2

, β =
hiσxx
ρwgl2

, τ =
κ

ρwgl3
, γ =

Eh3i
12(1− ν)2ρwgl4

. (5)
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Here we suppose that all parameters have the same order.
Expanding ϕ(x, y, t) in a Taylor series in powers of y we obtain, from the first equation and

first boundary condition of problem (4)

ϕ(x, y, t) =
∞∑
k=0

(−1)k
µk

(2k)!

∂2kf(x, t)

∂x2k
y2k, (6)

Substitution of (6) into the second and third boundary conditions of (4) yields system of
nonlinear partial differential equation, which with an accuracy up to terms of order O(ε2) looks

wt + ηx + εwwx −
1

2
wwxxt + γη5x − βηxxx + τη4x + δηttx+

+εµ

(
−(ηwxt)x −

1

2
wwxxx +

1

2
wxwxx

)
+

1

24
µ2wxxxxt = 0,

ηt + wx + ε(wη)x −
1

6
µwxxx −

1

2
εµ(ηwxx)x +

1

120
µ2w5x = 0,

(7)

where w(x, t) =
∂

∂x
f(x, t).

In the zero order approximation system (7) takes a form

wt + ηx = 0,

ηt + wx = 0,

and for compatibility of this system we have to assume

w = η +A1ε+A2µ+A3γ +A4β +A5δ +A6τ +A12εµ+A13εγ +A14εβ +A15εδ+

+A16ετ +A23µγ +A24µβ +A25µδ +A26µτ +A34γβ +A35γδ +A36γτ+

+ A45βδ + A46βτ + A56δτ + A11ε2 + A22µ2 + A33γ2 + A44β2 + A55δ2 + A66τ2, (8)

where Ak = Ak(x, t).
Applying perturbation method in the form given in [5] to (7) we obtain differential equation

for describing nonlinear waves of liquid under continuous ice layer

ηt + c3ηxxx + c4η4x + c5η5x + c6η6x + c7η7x + c8η8x + c9η9x+

+ c01ηηx + c03ηηxxx + c12ηxηxx + c04ηη4x + c22η
2
xx + c13ηxηxxx+

+ c05ηη5x + c14ηxη4x + c23ηxxηxxx + c001η
2ηx = 0. (9)

Values of constant coefficients ck are defined through small parameters (5) by following
expressions

c3 =
µ

6
− β

2
+
δ

2
, c4 =

τ

2
, c5 = −µβ

12
+
µδ

4
− βδ

4
+
γ

2
+

19µ2

360
+

3δ2

8
− β2

8
,

c6 =
µτ

12
+
δτ

4
+
βτ

4
, c7 =

µγ

12
+
γδ

4
+
βγ

4
− τ2

8
, c8 = −τγ

4
, c9 = −γ

2

8
,

c01 =
3ε

2
, c03 =

7εδ

4
, c12 =

5βε

8
+

23εµ

24
+

31εδ

8
, c04 =

τε

4
, , c13 = −τε

c22 = −9τε

8
, c05 =

γε

4
, c14 = −11γε

8
, c23 = −15γε

4
, c001 = −3ε2

8
.

(10)
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2.2. Small parameters of equation
Values of coefficients (10) were analyzed for typical parameters of model: the length of wave
is from 100 m to 1 km, the wave amplitude is of the order of 1 m, water depth is from 10m
to 50m, the thickness of ice is of the order of 1 m. Direct calculation of all coefficients in this
range shows that the biggest coefficient is c01. The another coefficients in equation is usually
two to three orders less than c01.The coefficients c3, c03, c12, c001 can be of the order 10−3–10−4.
The remaining coefficients has the lower order. The order of coefficient c4 depend on value of
parameter κ. We want to take into account dissipative effects in the model, so we keep it in
equation.

Waves in ocean can penetrate several hundreds of kilometers. It corresponds to time 103–104

in nondimensional variables for wave length from 100 m to 1 km. So we can omit all coefficients
in equation having the order 10−5 and less: c5, c6, c7, c8, c9, c04, c22, c13, c05, c14, c23.

2.3. Energy of long wave
The total energy of long wave consist of kinetic and potential energy. Elastic energy of ice
layer we do not take into account. We suppose that potential energy of nonperturbed system is
zero. The energy of unit-width wave can be calculated by the formula (potential energy can be
negative for the wave with negative amplitude)

E =
ρw
2

∞∫
−∞

h(x,t)∫
0

(
ϕ2
x + ϕ2

y

)
dxdy +

ρwg

2

∞∫
−∞

sgn(h− h0) (h− h0)2 dx.

In nondimentional variables (3) energy has the form

E = E0ε

 ∞∫
−∞

1+εη(x,t)∫
0

(
ϕ2
x +

1

µ
ϕ2
y

)
dxdy +

∞∫
−∞

sgn(η)η2dx

 (11)

Here E0 is potential energy of unit-width unperturbed water reservoir measured with respect
to bottom y = 0. Note, that ϕ2

x = O(1), while ϕ2
y = O(µ2). So the kinetic energy related to

vertical motion has the higher order of smallness than the energy related to horizontal motion.
Taking into account expansion (6) for potential and the expansion (8) expression for the

energy (11) can be written in terms of η(x, t)

E = E0ε
2

∞∫
−∞

(
(1 + sgn(η))η2 + (β − δ)η2x + γη2xx +

ε

2
η3
)
dx. (12)

Therefore the first correction to the total energy of nonperturbed system has the order O(ε2).

3. Numerical modeling
As was said above, we can omit following coefficients in Eq.(9): c5, c6, c7, c8, c9, c04, c22, c13,
c05, c14, c23. As a result we have equation (hereafter we denote function η(x, t) as u(x, t))

ut + c3uxxx + c4u4x + c01uux + c03uuxxx + c12uxuxx + c001u
2ux = 0. (13)

For numerical studying of wave attenuation the boundary value problem for Eq.(13) is
numerically solved with necessary number of boundary conditions:

u(0, t) = u(L, t) = ux(0, t) = ux(L, t) = uxx(0, t) = uxx(L, t) = 0. (14)
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Here L is big enough for wave was localized in domain [0;L] for all t < T .
Finite difference method is used to solve problem (13), (14). Eq.(13) can be written in the

form

∂u

∂t
+ L [u] = 0,

L [u] = c01uux + c3u3x + c4u4x + c03uu3x + c12uxuxx + c001u
2ux.

For numerical modeling we use implicit finite difference scheme, which leads to system

F (uj) = 0,

Fi(u
j) =

uji − u
j−1
i

τ
+ L̂

[
uji + uj−1i

2

]
.

Here L̂ is finite difference operator. All differential operators in L are approximated with central
differences to a second order of accuracy. The truncation error of this scheme is O(τ2) +O(h2).
Numerical experiments shows that this scheme is unconditionally stable. A couple of numerical
algorithms for solving KdV equations is presented in work [6]. The suggested methods can be
generalized for solving derived is Section II equation.

We have a system of nonlinear algebraic equations on each time layer, which is solved by
Newton’s method. On the each iteration of Newton’s method solution is computed by formula

uj (n+1) = uj (n) − J−1F (uj (n)), J =
∂F (uj (n))

∂uj (n)
. (15)

Exact form of Jacobin matrix J can be found in Appendix. For the first iteration of algorithm
the solution from the previous time layer is used

uj (0) ≡ uj−1.

L∞-norm is used to control convergence of Newton’s method

‖uj (n+1) − uj (n)‖
‖uj (n+1)‖

< 1E − 16.

So, a five-tridiagonal system of equations is required to be solved at each step of Newton’s
method. We use DGBSV solver from LAPACK library to solve this system of equations.

4. Results
To verify the proposed mathematical model several cases of problem was numerically solved. In
table 4 the values of model parameters and corresponding values of coeffcieints in Eq.(13) are
presented. The following initial condition was used in numerical simulation

u(x, 0) =
1

cosh2(x− x0)
.

Here x0 is some constant. In the first two cases value x0 = 10 was used. In the third case
x0 = 50. This condition correspond to inis-size wave written in nondimensional variables (3).
The time and spatial steps is chosen to be 0.02. Numerical tests with exact solutions for special
cases of equation give the error or order 10−3–10−4 with chosen steps.

On the figure 4 the numeric solution of Eq.(13) with boundary conditions (14) is presented
for all cases from table 4. As it can be seen, the wave shape is various for all cases and heavily
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Table 1. Values of parameters (5) and coefficients (10) for E = 3× 109 N/m2, σxx =
1× 104 N/m2, ν = 0.3, ρi = 900 kg/m3, ρw = 1025 kg/m3.

h0, m l, m a, m hi expansion parameters (5) coefficients in Eq.(9)

15 150 1 1

ε = 6.00× 10−2 µ = 6.94× 10−3

γ = 3.38× 10−6 β = 1.11× 10−5

δ = 2.44× 10−4 τ = 1.00× 10−2

c01 = 1.00× 10−1 c3 = 1.94× 10−3

c001 = 1.67× 10−3 c12 = 7.92× 10−4

c03 = 3.45× 10−4 c4 = 2.50× 10−4

40 200 0.5 1

ε = 1.25× 10−2 µ = 4.00× 10−2

γ = 1.71× 10−5 β = 2.49× 10−5

δ = 8.78× 10−4 τ = 1.00× 10−2

c01 = 1.88× 10−2 c3 = 7.09× 10−3

c12 = 5.22× 10−4 c4 = 2.50× 10−4

c03 = 2.27× 10−4 c5 = 1.02× 10−4

75 400 2 2

ε = 2.67× 10−2 µ = 3.52× 10−2

γ = 8.30× 10−6 β = 1.28× 10−5

δ = 9.38× 10−4 τ = 1.00× 10−2

c01 = 4.00× 10−2 c3 = 6.26× 10−3

c12 = 9.84× 10−4 c03 = 2.29× 10−4

c001 = 2.67× 10−4 c4 = 2.50× 10−4

depend on the parameters of the model. The attenuation of the wave energy was numerically
calculated with taking into account expression (12). Results presented on the figure 4. The shape
of plot for the energy is similar to results, obtained by Wadham [1]. The value of parameter τ
was fixed in all three cases. The additional tests for other values of τ shows that the shape of
energy curve does not crucially depend on it exact value. Additional investigation is required to
explore the dependence of energy attenuation on it value.

However obtained curve of energy against time can not be properly fitted by the expression
(1), which has good agreement with field data [1]. There some reasons for this. The proposed
model is phenomenological and require additional argumentation. Furthermore proposed model
does not take into account some processes. As it can be seen on figure 4, the curve of the solution
in some points is very bended. In practice, this leads to the ice break up and subsequent energy
release. The model must be changed to take into account such processes. The bottom surface
of the ice layer is not plain for real ice floe and turbulent mixing must be considered.
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Appendix
The nonzero coefficients in Jacobian (15) have a form

J0,0 = 1,

J1,0 = − 3

2h
, J1,1 =

2

h
, J1,2 = − 1

2h
,
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Figure 1. Numerical solution of the problem (13), (14) for three cases from table 4 for different
time
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Figure 2. Energy of wave (12) for three cases from table 4
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Ji,i+2(u
j) =

c3
4h3

+
c4

2h4
+
c03
8h3

(
uji + uj−1i

)
,

Ji,i+1(u
j) = − c3

2h3
− 2c4
h4

+
c01
8h

(
uji + uj−1i

)
− c03

4h3

(
uji + uj−1i

)
+

+
c12
4h3

(
−uji + uji+1 − u

j−1
i + uj−1i+1

)
+
c001
16h

(
uji + uj−1i

)2
,

Ji,i(u
j) =

3c4
h4

+
c01
8h

(
uji+1 − u

j
i−1 + uj−1i+1 − u

j−1
i−1

)
+

+
c03
8h3

(
−uji−2 + 2uji−1 − 2uji+1 + uji+2 − u

j−1
i−2 + 2uj−1i−1 − 2uj−1i+1 + uj−1i+2

)
−

− c12
4h3

(
uji+1 − u

j
i−1 + uj−1i+1 − u

j−1
i−1

)
+

+
c001
8h

(
uji + uj−1i

)(
uji+1 − u

j
i−1 + uj−1i+1 − u

j−1
i−1

)
,

Ji,i−1(u
j) =

c3
2h3
− 2c4
h4
− c01

8h

(
uji + uj−1i

)
+
c03
4h3

(
uji + uj−1i

)
+

+
c12
4h3

(
uji − u

j
i−1 + uj−1i − uj−1i−1

)
− c001

16h

(
uji + uj−1i

)2
,

Jj,i−2(u
j) = − c3

4h3
+

c4
2h4
− c03

8h3

(
uji + uj−1i

)
.

Here i = 2, . . . , n − 2, where n is maximal index of spatial node. Values Jn,i can be obtained
from and J0,i by giving opposite sign. While the values of Jn−1,i have the same sign as J1,i.
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