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Abstract. We consider nonlinear absorption of Alfven waves due to dissipative effects in 

plasma and relaxation of temperatures of electrons and ions. This  study is based on an exact 

solution of the equations of two-fluid electromagnetic hydrodynamics (EMHD) of plasma. It is 

shown that in order to study the decay of Alfven waves, it suffices to examine the behavior of 

their amplitudes whose evolution is described by a system of ordinary differential equations 

(ODEs) obtained in this paper. On finite time intervals, the system of equations on the 

amplitudes is studied numerically, while asymptotic integration (the Hartman-Grobman 

theorem) is used to examine its large-time behavior. 

1. Introduction 

We examine time decay of Alfven EMHD waves due to dissipative factors (magnetic and 

hydrodynamic viscosities  of electrons and ions, as well as relaxation of their temperatures) under  the 

assumption that the Alfven wave has been initially excited in plasma occupying the entire space. This 

study is based on the the equations of electromagnetic hydrodynamics (EMHD) of plasma [1,2] that 

take into account the electron-ion structure of plasma and are written out in  Section 2. In Section 3, it 

is shown that the nonlinear absorption of an Alfven wave due to dissipation is described by a system 

of ordinary differential equations (ODEs) for the amplitudes of the Alfven wave parameters.  

Solutions of the ODEs for the amplitudes on finite time intervals are studied numerically in Section 5, 

while large time solutions are obtained in Section 4 by asymptotic integration with the help of the 

Hartman-Grobman theorem [3].  This investigation allows us to find some  important relationships 

characterising the conversion of magnetic and kinetic energies of an Alfven wave into  thermal  energy 

of electrons and ions. These relationships  are of principal value for explaining abnormal heating of 

plasma.  

2. EMHD Equations of Plasma 

In view of the electron-ion structure of plasma, in particular, taking full account of electron inertia, we 

can write the equations of hydrodynamics in the form 
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Here,  k  is the Botzmann constant;    em ,   ,   mmm ,    , 

 )(   vvU , where  , v , m , e  are, respectively, the densities, hydrodynamic 

velocities, masses, and absolute values of charges of electrons and ions, which are assumed to be ideal 

polytropic gasses  with the common adiabatic exponent  . Thus, we have a closed system of 

equations for the unknown functions  , U , T , H , E . The momentum  flux density tensor 

)()()( cph  , the viscous stress tensor Uc =P , and the Hall stress tensor W  have the 

form 
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where UdefD U , )/def(D jc   are strain tensors. The viscous stress tensors of electrons and ions 

are assumed to have the form 3)trD32(D2    , where   vdefD ;  ,   are 

the first and the second hydrodynamic viscosities of electrons and ions, respectively;    , 

   , 
   22  , and  ,  ,   are expressed similarly. Finally, b  and    

are the coefficients of  thermal relaxation  and heat conductivity of electrons and ions, respectively. 

Below, it is assumed that 
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Here, ee   is the electron charge,   eeZ /  is the ion charge multiplicity, 15L  is the Coulomb 

logarithm,  mmi ,  mme . We omit the expressions of  , since the results obtained below do 

not depend on  . 

The law of conservation of total energy holds on the solution of system (1): 
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where ))1(()()2()(, 22    ppjA jU  and  

  /)(  is plasma internal energy density. 

3. Decay of Alfven Waves in EMHD  

Consider plane flows ( 0 zy ) of uniform plasma ( const ) described by system (1). For 

such flows, we have constxH , 0Ux  .  In the absence of dissipation ( 0   , 0b , 

0 ,  ), system (1) in the plane case admits solutions on the line Rx  with the initial 

conditions 
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where 0  is a constant (wave number) and complex notation zy iUUU  , zy iHHH  , 

etc., is used for the transverse components of the corresponding vector fields. This solution has the 

form 

 
0T,)(,)(,)(   TeteEethHetuU xixixi 

 (4) 

where )(tu , )(th , )(te  are found by substituting the expressions (4) into system (1): 

 }{
v

)4(
)(,)( 21

A

2/1

21
titititi

eCeCtheCeCtu 

 
 




  

2/1

212

4
,,

1
)( 























































 

p

p

tixtix c
reC

c

H
eC

c

H

r

i
te  (5) 

 







 4v,,

1

4

)1(12

v
A

2/1

222

22

2 x
A H

rr

r

r

r













































   

 1
00

A
2

1
00

A
1 )(

4

v
,)(

4

v 



 





























 









uhCuhC   

The solution (4), (5), called an Alfven wave, is a superposition of transverse waves moving in the 

direction of the magnetic field or in the opposite direction   with different phase velocities  depending 

on the wave length 2 . In the MHD-limit, 1r , the solution (4), (5) turns into the classical 

Alfven wave. 

For a plane flow, consider the solution of system (1) on the line with the initial conditions (3) and 

dissipation taken into account. This solution describes the decay of the Alfven wave (4), (5) due to 

dissipative effects and has the form 
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where the amplitudes )(tu , )(th , )(tT  satisfy the system of ODEs obtained by substituting the 

functions  (6) into system (1): 
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plane waves is purely temporal, in the sense that only the amplitudes )(tu , )(th , )(te , )(tT are 

varying in time, while the spatial sine distribution of the plasma parameters remains unchanged; (ii) 

the decay of Alfven waves does not depend on the thermal conductivity of electrons and ions. From 

(2), it follows that the conservation law 
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holds on the solution (6), where 0C  is determined by the initial condition (3). 

4. Asymptotic Integration of Amplitude Equations for t  

Let us write system (7) in dimensionless form, choosing the following characteristic scales of the 

density, the magnetic field strength, velocity, etc.:  0 , xHH 0 , A0 vU , 
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Thus, if 2  is the length of an Alfven wave, then the problem of wave decay has two 

determining parameters: 42/5
xH  and 2/1 .  Moreover, the energy integral (8) can be rewritten in 

the dimensionless form 
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Separating the real and the imaginary parts in system (9), we pass to the real unknown functions 1u , 
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4) Each equation in (12) has neither multiple, nor conjugate, nor real roots. 

5) All roots of equations (12) have negative real parts. 

6) All eigenvalues },,,,{ 21210   of the matrix J  are single and there is a basis of the space 5C  

that consists of eigenvectors of J . 

It follows that the only singular point of the modified system  (9) is an attractive stable 

multidimensional focus and, by the Hartman-Grobman theorem,  the topology of the integral curves in 

a neighborhood of the singular point of this system coincides with that of its linearization at this 

singular point. Thus, for t , the decay of the Alfven wave is correctly described by the 

linearization of the modified system (9) at the singular point )0,0,0,0,( 0T . The solutions of the 
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sign and let 0 jj iyx  be the eigenvector of J  corresponding to j , 2,1j . If jjj iba  , 

2,1j , )0,0,0,0,1(0 x , then },,,,{ 22110 yxyxx  is a basis of 5R  in which the Jacobi matrix J  has the 

form 
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Therefore, if  ),,,,( 43210 zzzzz  are the coordinates of a  vector in 5R  in the basis },,,,{ 22110 yxyxx , 

then system (13), in that basis, splits into three independent subsystems, 
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whose solutions can be easily written out, which gives us the solution of system (13). This  solution  

represents a two-frequency spiral (with frequencies 1b , 2b ) in five-dimensional space. The spiral 

winds around the origin with the decrements of distance from the origin being equal to  ja , 2,1j , 

0 . In particular,   we have 
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where the constants 0D , 1D , 2D , 1 , 2  are found by expanding the initial vector  0
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with respect to the basis },,,{ 2211 yxyx .  The explicit expressions for jx , jy , 2,1j , are the 

following: 
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The constants ja , jb  can be easily calculated by the formulas for the roots of quadratic equations and 

square roots of  complex numbers. The resulting expressions are rather lengthy, but can be simplified 

in some special or limit cases. Thus, for 1r  (short waves),  00 h , 0 , we have the 

asymptotic formulas 
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where 
11 )()( 





  RRR  , 
11 



  RRR , 

12/112/1 )()( 





  RRR  , with 

the upper and the lower signs in (14) being in agreement. For  1r  (long waves), we have  
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The coordinate 
0T  of the singular point is equal to the equilibrium temperature established in plasma 

after the complete absorption  of the Alfven wave and the relaxation of electron and ion temperatures:   
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It follows from  (15)  that the equilibrium temperature does not depend on the plasma magnetization 

xH , but depends on the wave length  2 . Theoretically, (15) indicates that fairly short Alfven 

waves, even of small amplitudes 0u , 0h ,  may heat up plasma to arbitrarily high temperatures. 
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5. Results of Numerical Analysis  

The absorption of an Alfven wave amounts to the conversion of its kinetic energy 

2)(
2

kin tu  and its total (with the kinetic energy of the relative motion of electrons taken into 

account) magnetic energy )8()()1(
22

m  thr  into the thermal energy of electrons and ions 

1
-


 aT , 1)( 

  ZaT . This process is superimposed on the relaxation of the electron and ion 

temperatures determined by the coefficient b . Numerical solutions of the Cauchy problem for system 

(14) show that the absorption of an Alfven wave splits into two stages:  (i) first, there is a rapid 

conversion  of its magnetic energy and a considerable part of its kinetic energy  into the thermal 

energy of (mostly) electrons; (ii) then,   slow (for the most part) relaxation of temperatures occurs, 

which is approximated by the solution of system (9) with 0u , 0h ; here, the remainder of the 

kinetic energy is converted into heat. The curves in Figure 1 represent typical values of thermal 

energies of electrons and ions, as well as the magnetic and the kinetic energies, versus time in the case 

of 1.0r , 300 , 1.00 T , 10 T , 50 h , 5.10 u , 0 . If the hydrodynamic viscosity of 

ions is taken into account, then the absorption process becomes much faster. For instance, the time of 

magnetic energy absorption becomes equal to 2/1)(  cc  , where 
c  are cyclotron frequencies of 

electrons and ions. If we additionally take into account electron viscosity, then the absorption process 

becomes even faster, occurring in a fraction of 2/1)( 
cc  , and the absorption time for the magnetic 

energy becomes 2/12 )(10  cc  . 

 

Figure 1. Time dependence of the thermal energy of electrons (“···”) and ions (“––”) in the Alfven 

wave (a), the magnetic energy of the Alfven wave (b), the kinetic energy of the Alfven wave (c) 
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