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Abstract. The paper deals with a numerical solution of the problem of waveguide propagation
of polarized light in smoothly-irregular transition between closed regular waveguides using the
incomplete Galerkin method. This method consists in replacement of variables in the problem of
reduction of the Helmholtz equation to the system of differential equations by the Kantorovich
method and in formulation of the boundary conditions for the resulting system. The formulation
of the boundary problem for the ODE system is realized in computer algebra system Maple.
The stated boundary problem is solved using Maples libraries of numerical methods.

1. Introduction
The paper deals with a numerical solution to the problem of waveguide propagation of polarized
light in smoothly-irregular transition between closed regular waveguides using the incomplete
Galerkin method [1, 2]. This method consists in replacement of variables in the problem of
reduction of the Helmholtz equation to the system of differential equations by the Kantorovich
method [3] and in formulation of the boundary conditions for the resulting system. The
Kantorovich expansion is made in the system of functions that satisfy the reduced boundary
conditions [3]. Coefficient functions of the Kantorovich expansion are the desired values of the
boundary problem. The formulation of the boundary problem for the ODE system is realized
by using computer algebra system Maple. The stated problem is solved using Maples libraries
of numerical methods.

2. Statement of the problem
Consider smoothly-irregular along z closed waveguide transition between closed planar regular
waveguides. The lower and upper boundaries of the transition are given by the equations x = 0
and x = h (z). The condition of smooth irregularity of the waveguide transition is represented
by continuity of h (z) and h′ (z) for all z.

Function h (z) describes the variable height of irregular waveguide transition, and in order
to meet the conditions of smooth irregularity it is necessary that h (0) = h1, h (d) = h2 and
h′ (0) = h′ (d) = 0. Let us consider the problem of propagation of polarized electromagnetic
field in the described structure made of material with refractive index nf .
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Figure 1. Waveguide transition between two closed planar waveguides of constant cross-section.

Electromagnetic field propagating in the waveguide satisfies the Maxwell’s equations,
constitutive relations and boundary conditions [4, 5]. For the described planar waveguide
structure (Fig. 1) the Maxwells equations can be reduced to two independent subsystems with
respect to the desired component of the electromagnetic field – subsystems for TE- and TM-
modes. Subsystem for TE-modes can be formulated as the Helmholtz differential equation with
respect to the component Ey and two differential equations relating the components Hx and Hz

with Ey. Let us denote Ey by u = u (x, z) and write down the Helmholtz differential equation[1](
∂2

∂x2
+

∂2

∂z2
+ k2

)
u = 0 (1)

with coefficient k2 = (2πnf/λ)2 (λ is wavelength), and the boundary conditions of the first
kind[2]:

u|x=0 = u|x=h(z) = 0 (2)

The function u = u (x, z) meets the conditions of excitation and emission at infinity[2]:

u|z≤0 =
∞∑
n=1

Rne
−iγnz sin

(
πnx

h1

)
+ Aeiγn0z sin

(
πn0x

h1

)
(3)

u|z≥d =
∞∑
n=1

Tne
iΓnz sin

(
πnx

h2

)
(4)

where γn = k2 −
(
πn
h1

)2
, Γn = k2 −

(
πn
h2

)2
, A is the given amplitude of the incident mode of

number n0, Rn and Tn are unknown amplitude coefficients.
According to the algorithm proposed in [1, 2], we introduce new variables which transform

an irregular area in the strip:
ξ (x, z) = x/h (z)
η (x, z) = z.

(5)

In the new coordinates the Helmholtz equation takes the form:(
1

h2 (η)
+ ξ2b2 (η)

)
× ∂2u

∂ξ2
− 2ξb (η)× ∂2u

∂ξ ∂η
+
∂2u

∂η2
+ ξc (η)× ∂u

∂ξ
+ k2u = 0 (6)
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where b (η) = h′ (η) /h (η), c (η) = b2 (η)−b′ (η). The boundary conditions (2) and the conditions
of excitation and emission at infinity (3), (4) in the new coordinates take the following form:

u|ξ=0 = u|ξ=1 = 0 (7)

u|η≤0 =
∞∑
n=1

Rne
−iγnη sin (πnξ) + Aeiγn0η sin (πn0ξ) (8)

u|η≥d =
∞∑
n=1

Tne
iΓnη sin (πnξ) (9)

Following [1, 2], we apply the Kantorovich method [3] for the formulation of a system of
differential equations and boundary conditions for this system. We use the eigenfunctions of
the waveguide problem in the zeroth approximation by h′ (η) as the basis functions of the
Kantorovich method, and we justify such a choice for the problem in the zeroth approximation.

3. Zeroth approximation
Consider the case, when h′ (η) is a small quantity: h′ (η) ≤ δ � 1. Equation (6) in the zeroth
approximation by the parameter δ takes the form:

−h2 (η)

(
∂2u

∂η2
+ k2u

)
=
∂2u

∂ξ2
(10)

We seek a solution of (10) that can be represented as a product u (ξ, η) = V (η)ϕ (ξ). We
substitute the estimated form of solution to the equation (10) and divide the equation by V ϕ.
The resulting equation must be satisfied for all values of the variables, for u (ξ, η) = V (η)ϕ (ξ)
to be a solution of (10), which means:

−h2 (η)

(
V ′′

V
(η) + k2

)
=
ϕ′′

ϕ
(ξ) = −λ (11)

where λ is an unknown constant. Relation (11) and conditions (7) formulate the Sturm-Liouville
problem:

ϕ′′ + λϕ = 0,
ϕ (0) = ϕ (1) = 0.

(12)

Eigenvalues of the problem (12), given by λn = (πn)2 where n = 1, 2, 3 ..., correspond to
eigenfunctions (defined with an accuracy up to a factor), which take the form:

ϕn (ξ) = sin
(√

λnξ
)
, n = 1, 2, 3 ... (13)

Functions (13) depend on z parametrically, and the system of functions (13) is orthogonal for
all z from [0 , d] and coincides with the system of eigenfunctions of the left regular waveguide
at z = 0 and with the system of eigenfunctions of the right regular waveguide at z = d.

We use the system of functions (13) as the basis in the Kantorovich method [3], because the
functions (13) satisfy the exact boundary conditions (7).
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4. Reduction to the boundary problem for ODE system
We seek an approximate solution to the equation (6) in the form of a partial sum of the series
in the system of functions (13) satisfying the boundary conditions (7):

uN (ξ, η) =
N∑
n=1

Vn (η) sin (πnξ) (14)

where N is the number of terms in the partial sum of the series.
We substitute the solution (14) into the equation (6) and the boundary conditions (8), (9)

and apply projection scheme of the Galerkin method [6, 7]. As a result we get the boundary
problem for the system of N ×N ordinary differential equations of the second order:

A (η)~v′′ + P (η)~v′ + Q (η)~v = ~0 (15)

(~v′ + iDγ~v)|η=0 = 2iγn0
~δn,n0A/h1

(~v′ − iDΓ~v)|η=d = 0
(16)

where ~v = (V1 (η) , V2 (η) , ... , VN (η) )T is the vector of the desired amplitude (coefficient)
functions of the Kantorovich expansion, A (η) , P (η) , Q (η) are matrix functions, elements of

which are calculated using Maple, Dγ = diag {γn}Nn=1, DΓ = diag {Γn}Nn=1, ~δn,n0 is a vector
with zero components, with the exception of one, standing on n0-th position.

The described algorithm of stating the boundary problem (15), (16) by the incomplete
Galerkin method is realized in computer algebra system Maple. The boundary problem (15), (16)
is being solved numerically in Maple, the results of calculations are presented below.

5. Numerical calculation
We solve numerically the problem of waveguide propagation of monochromatic light of
wavelength 0, 55µ in the waveguide transition made of material with refractive index nf = 1, 51.
Function h (z) is third-degree polynomial and its value changes smoothly from h1 = 0, 70µ
to h2 = 0, 92µ along the interval of length d = 2, 00µ. In the waveguide of the thickness
h1 = 0, 70µ there exist 3 non-evanescent modes, in the waveguide of the thickness h2 = 0, 92µ
- 5 non-evanescent modes.

We consider two cases: in the first case the first non-evanescent mode (n0 = 1) is incident
on the described structure, in the second case the first evanescent mode (n0 = 4) is incident on
the structure. The total number of modes in the expansion N = 16. The boundary problem is
solved by finite difference scheme with partition into 2048 points using Maple function dsolve.

The numerical calculation (see Fig. 2) shows the evolution of the amplitude functions of all
allowable modes when the mode with the number n0 = 1 is incident on the irregular transition.
We can observe that the second and the third non-evanescent (or guided) modes are excited.
Amplitude of incident mode (n0 = 1) decreases because of the energy redistribution between
guided modes of irregular transition.

The second example (see Fig. 3) shows the evolution of the amplitude functions in the case
when the first evanescent mode (n0 = 4) is incident on the irregular transition. Amplitude of
the incident evanescent mode decreases with the thickness of the waveguide decreasing till the
critical value. When the thickness of the waveguide becomes less than the critical thickness,
the evanescent mode becomes the guided mode with decreased amplitude. And as in the first
example, other guided modes are excited in the waveguide as well.

The results of numerical experiments in both examples are in good agreement with the
theoretical expectation of the behavior of waveguide modes.
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Figure 2. First four amplitude (coefficient) functions: real parts are shown by solid lines,
imaginary parts – by dashed lines. Incident mode has the number n0 = 1 and amplitude
A = (i+ 1) /2.

Figure 3. First four amplitude (coefficient) functions: real parts are shown by solid lines,
imaginary parts - by dashed lines. Incident mode has the number n0 = 4 and amplitude
A = (i+ 1) /2.

6. Conclusion
The paper considered using of the incomplete Galerkin method to calculate the waveguide
propagation of monochromatic polarized light in closed waveguide structures with irregularity
along the propagation direction. Algorithms for symbolic transformations of the original
problem for the Helmholtz equation to a boundary problem for ODE system and numerical
solution of the reduced boundary problem are implemented using computer algebra system
Maple. The numerical experiments show that using of eigenfunctions of waveguide problem
in zeroth approximation as the basis in the Kantorovich method is adequate to the problem.
The numerical results show qualitative agreement with the theoretically expected behavior of
waveguide modes and evanescent modes.

Authors considered the waveguide propagation of monochromatic polarized light in an open
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irregular transition between two regular planar open waveguides in [8, 9]. Comparing the results
of current research and the results from [8, 9] shows qualitative agreement and the ability to
generalize the incomplete Galerkin method from the closed to the open irregular waveguide
transitions.
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