
 

 

 

 

 

 

GPU accelerated Foreign Object Debris Detection on Airfield 

Pavement with visual saliency algorithm 

Jun Qi, Guoping Gong and Xiaoguang Cao 

Image Processing Center, Beihang University, Beijing, China 

E-mail: xgcao@buaa.edu.cn 

Abstract. We present a GPU-based implementation of visual saliency algorithm to detect 

foreign object debris(FOD) on airfield pavement with effectiveness and efficiency. Visual 

saliency algorithm is introduced in FOD detection for the first time. We improve the image 

signature algorithm to target at FOD detection in complex background of pavement. First, we 

make pooling operations in obtaining saliency map to improve recall rate. Then, connected 

component analysis is applied to filter candidate regions in saliency map to get the final targets 

in original image. Besides, we map the algorithm to GPU-based kernels and data structures. 

The parallel version of the algorithm is able to get the results with 23.5 times speedup. 

Experimental results elucidate that the proposed method is effective to detect FOD real-time. 

1.  Introduction 

A clean and flat airport pavement provides a safe environment for airplane’s take-off and landing. It is 

vital to detect foreign object debris(FOD) timely, such as little stones and screws in pavement, which 

could make damages to airplane tires and even lead to heavy accident.  

Li [1] designed a multi-sensor system and applied combined methods to make FOD detection. Liu 

[2] proposed a traversal method cutting images into small pieces and extracting features, such as 

Harris corner, GLCM of each piece for classifying. However, these two methods are complicated or 

time consuming. The detection of FOD with effectiveness and efficiency becomes a challenging task. 

Recently, visual saliency has drawn much attention in many areas, including neurobiology and 

computer vision [3]. It is suggested that human’s attention is directed to visually distinctive regions in 

an image rapidly without much guidance. This capability inspires us to make saliency detection, 

aiming at highlighting visually salient regions or objects in an image. Considering the background 

characteristics of airport pavement, where FOD would be visually conspicuous, we apply visual 

saliency algorithm to make FOD detection in airfield pavement. 

At the same time, in order to meet the need of real-time detection, parallelization is required to 

reduce the computation time. Nowadays, GPU has been widely used in various fields, especially in 

computer vision and image processing [4]. GPU contains thousands of cores to process parallel 

workloads efficiently. Using GPU can make full use of hardware performance and improve the speed 

of detection algorithm obviously.  

Our main contributions are summarized as follows: 

First, an effective visual saliency algorithm for FOD detection is proposed.  

Second, we accelerate the algorithm using GPU with highly parallel structure, and achieve real-

time detection, which will be of great significance in real scene. 

CCISP                                                                                                                                                  IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 787 (2017) 012018         doi:10.1088/1742-6596/787/1/012018

International Conference on Recent Trends in Physics 2016 (ICRTP2016) IOP Publishing
Journal of Physics: Conference Series 755 (2016) 011001 doi:10.1088/1742-6596/755/1/011001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 

 

 

 

 

 

The paper is organized as follows. Section 2 introduces our visual saliency algorithm. The GPU 

implementation details are presented in Section 3. In Section 4, experiments and analysis are made to 

show the performance and speed of proposed algorithm. Conclusions are drawn in Section 5. 

2.  Visual saliency algorithm 

In existing works, visual saliency algorithms can be generally divided into two parts, spatial domain 

and frequency domain. Considering the speed of FOD detection in airfield pavement, we take 

frequency domain algorithms into account to compute saliency, which can be efficiently mined 

through simple spectrum modulation.   

Our visual saliency algorithm is shown in Fig 1. Firstly, preprocessing methods including 

frequency and spatial filter are employed to eliminate interference of complex background. Secondly, 

we use an improved algorithm based on image signature to obtain saliency map. Finally, saliency 

blocks are segmented with connected component analysis and the locations are mapped to original 

image. 

 

Figure 1.visual saliency algorithm. 

2.1.  preprocessing 

Actually, airfield pavement image has complex background with road groove, maker line, 

underground lamp, which can make obstruction to FOD detection. Firstly, we make Discrete Fourier 

Transform(DFT) to the original image, and do band pass in frequency domain. Road groove was filter 

without losing FOD detection object. Then, Inverse Discrete Fourier Transform(IDFT) and 

normalization are made to get image in spatial domain back. At last, average filter is used to eliminate 

noisy points.   

2.2.  obtaining saliency map 

Image signature [5] is defined as follows: 

A grey image combines with foreground and background. 

 , , N  x f b x f b  (2.1) 

f represents the foreground and is assumed to be sparsely supported in the standard spatial basis.  

b  represents the background, and is assumed to be sparsely supported in the basis of the Discrete 

Cosine Transform (DCT).  In airfield pavement image, our detection target FOD can be treated as 

foreground. The image signature is defined as: 

 =ImageSignature( ) ( ( ))sign DCTx x x   (2.2) 

We can approximately isolate the support of f  by taking the sign of the mixture signal x  in the 

transformed domain and then inversely-transform it back into the spatial domain. 

 ( ( ))IDCT signx x   (2.3) 

Pooling is widely used in deep neural network, which can maintain spatial invariance. The pooling 

window size can be arbitrary, and windows can be overlapping. We improve Hou’s saliency model by 

applying pooling methods. 

CCISP                                                                                                                                                  IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 787 (2017) 012018         doi:10.1088/1742-6596/787/1/012018

2



 

 

 

 

 

 

In order to improve speed, we first make subsampling and overlapping pooling to the image to 

reduce the dimension to from (2048, 2048) to (202, 202). Then, image signature is calculated to the 

image. 

 At last, we apply non-overlapping mean pooling and non-overlapping max pooling to improve 

recall. Max pooling is a way of taking the most responsive node of the given interest region. The 

saliency map size we obtained finally is (64, 64), where 1 pixel corresponds to 32 pixels in original 

image. Max pooling helps find the most likely node to avoid missing true targets in location mapping 

stage.  

2.3.  location mapping 

To get final saliency regions, we make connected component analysis of the saliency map. And rules 

are made to map location in original image according to the area of connected component. For 

example, large area of connected component is excluded, which is not our detection target, such as 

small stones and screws. Small area is judged as effective saliency regions and its location will be 

mapped to a box in original image.   

The results of our algorithm are shown in Fig 2. Fig 2(a) is the original image. Fig 2(b) is image after 

preprocessing. Fig 2(c) is the saliency map and Fig 2(d) is the location mapping results. 

 

 

 

 

 

 

 

 

(a)                             (b)                                (c)                            (d) 

Figure 2. Results of visual saliency algorithm. 

3.  Implementing with GPU 

Compute Unified Device Architecture(CUDA) is a parallel computing platform and a software 

environment for parallel computing created by Nvidia [6]. It allows software developers to use a 

CUDA-enabled graphics processing unit(GPU) which can launch thousands of threads in parallel for 

general purpose processing. In order to achieve higher performance, we make parallel optimizations to 

some parts of the algorithm in consideration of memory model and threads scheduling of CUDA. 

3.1.  convolution 

Convolutions are used widely by many applications in image processing task, including blur filters, 

mean pooling and so on. For instance, each pixel has to sum up its own value and others values in 

neighbourhood in an average filter. Then, an average application will be made to get the output pixel 

value.  

It is noticed that the calculation of adjacent output pixel value shares most input pixel value. 

Considering shared memory’s high bandwidth and low latency, we can load pixels to be filtered and 

the corresponding apron pixels [7] into shared memory first. Then, in next step, data to be calculated 

would be read from shared memory other than global memory, which could reduce repeated and time-

consuming communications between global memory and processing units.  

3.2.  reduction 

To do normalization of an image, we have to get minimum and maximum pixel value of an image first. 

Sequential computation complexity of the operation reduction is over the number of input data ( )N , 

whereas parallel computation complexity can be O(log )N . Following is the parallel reduction 

algorithm implemented in CUDA. 

CCISP                                                                                                                                                  IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 787 (2017) 012018         doi:10.1088/1742-6596/787/1/012018

3



 

 

 

 

 

 

For a (2048, 2048) size image, we set gridDim (64, 64), and blockDim (32, 32). We first make 

reduction in every block, which has 1024 threads. Threads allocation details are shown in Fig 3. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Threads allocation.      Figure 4. Reduction steps. 

 

SM3.0 introduced the “shuffle” instruction, which can be used to perform a reduction across the 32 

threads in a wrap [8]. In a block which has 32*32 threads, we get maximum pixel value in every row 

using __shfl instruction and copy the value to an array with size 32, which is allocated in shared 

memory. Then, we only have to make reduction in the shared memory to get the maximum of each 

block. In order to eliminate the need to invoke multiple kernels, we use atomic operations atomicMax 

to merge maximum value in every block. The reduction details are show in Fig 4. 

3.3.  image signature 

The main operations in image signature are making DCT and IDCT transformation. Take DCT for 

example, a two dimension DCT defines as follows: 

 

 
1 1

0 0

( 0.5 ) ( 0.5 )
( , ) ( ) ( ) ( , )cos cos

N N

i j

i j
F u v c u c v f i j u v

N N

  

 

    
    

   
   (3.1) 

 
1 , 0

( ) 0,1,..., 1
2 , 0

N u
c u u N

N u

 
  



  (3.2) 

The two dimension approach performs DCT on input sample X  by subsequently applying DCT to 

rows and columns of the input signal. In matrix notation this can be expressed using the following 

formula:   

 
0.5

( , ) ( )cos( )T j
F AXA A i j c i i

N


    (3.3) 

As DCT8 8  algorithm [9] will loss accuracy of the result, we make DCT transform using matrix 

multiply instead. CUDA provides cuBLAS library to make matrix multiplying operations with high 

efficiency. Coefficient matrix are calculated only once and load to device memory in initialization 

stage. The image signature of each image can be computed very fast with CUDA in later stage.  

3.4.  multi-streams and multi-GPUs 

Stream is a sequence of operations that execute in issue-order on the GPU [10]. SM 2.x-class and later 

GPUs are capable of concurrently running multiple kernels. To improve the utilization of hardware, 

we can process a batch of images with starting multiple streams, which would be concurrently running. 

Comparing to processing one by one, batch operation will reduce average processing time of a single 

image. 

At the same time, multiple GPUs can operate in parallel for enough computational density task. 

CUDA has supported multiple GPUs since the beginning, and each GPU can be controlled by a 

CCISP                                                                                                                                                  IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 787 (2017) 012018         doi:10.1088/1742-6596/787/1/012018

4



 

 

 

 

 

 

separate CPU thread. An amount of images is assigned to multiple GPUs, which highly improve the 

processing speed.  

4.  Experiments and analysis 

Experiments were performed using two Nvidia TITAN X GPU and one Intel i7-4790K CPU. In order 

to evaluate the detection performance of our algorithm, we set up a pavement image dataset containing 

1000 images. The FOD on the airfield pavement is mainly stones and screws.  

The recall and precision are defined as follows in Fig 5. 

 
 

Figure 5. The definition of recall and precision.  

Red boxes are real target and green boxes are generated by saliency algorithm. It is regarded as 

correct detection that the generated box covers the real target mostly. The recall of Fig 5 is 2:3, and the 

precision is 2:5. 

Table 1 gives the detection precision and recall of the saliency detection algorithm. 

Table 1. Recall and precision of Hou’s model and ours. 

 recall precision 

Image Signature 87.83% 64.76% 

Ours 96.46% 62.93% 

The result shows that our algorithm gets higher recall in FOD detection, which guarantees that 

almost all FOD will be detected in the original image.  

As saliency map segmentation and connected domain analysis need complicated logical operation, 

which are not suitable for transplanting to GPU, we make parallel accelerations on the remaining parts 

of the detection framework. 

We experimented with algorithms by varying number of concurrent streams. Fig. 6 shows the 

decrement in average executional time as stream size gets varied from 1 to 50. It is often better to set 

more streams to make full utilization of hardware. 

 

Figure 6. Average processing time of single image with multi-streams 

CCISP                                                                                                                                                  IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 787 (2017) 012018         doi:10.1088/1742-6596/787/1/012018

5



 

 

 

 

 

 

Table 2 shows the average execution time of single image in CPU, one GPU and multiple GPUs. 

Table 2. Speed up with GPU. 

 Preprocess and 

image signature  

time(ms) 

Speed up Saliency map 

segmentation and 

connected component 

analysis time(ms) 

Total time Total Speedup 

CPU 287.94 -- 8.54 296.48 -- 

GPU 4.06 70.9 -- 12.60 23.5 

Two GPUs 2.15 133.9 -- 10.69 27.7 

Saliency map segmentation and connected component are executed in CPU only. The experiment 

results show that the GPU implementation parts obtained 70.9 times speedup and get approximately 

linear speedup in multiple GPUs with 133.9 times speedup. In conclusion, 23.5 times speedup is 

achieved using single GPU in total algorithm. 

5.  Conclusion 

The paper presents a GPU accelerated visual saliency algorithm, which performs effectiveness and 

efficiency in FOD detection on airfield pavement. We improve image signature algorithm with 

pooling operations in generating saliency map and connected component analysis in locating saliency 

blocks. We make parallel optimizations to some parts of the algorithm with GPU. Experiments result 

shows that recall rate gets increased and the GPU implementation achieves 23.5 times speedup. The 

processing time of single image reduce to 12.60ms, which is significant in real-time detection.  

References 

[1] Y Li and G Xiao 2011 A new FOD recognition algorithm based on multi-source information 

fusion and experiment analysis International Symposium on Photoelectronic Detection and 

Imaging  Advances  vol 34 (Infrared Imaging and Applications) pp 112-112 

[2] D Liu, X Cao, B Xue and H Li 2013 Feature analysis and detection of FOD under complex 

background of airport pavement vol 21 (Electronic Design Engineering) pp 12-15 

[3] Itti Laurent and Christof Koch 2000 A saliency-based search mechanism for overt and covert 

shifts of visual attention vol 40(Vision research) pp 1489-1506. 

[4] Vinith B, Akhila M K, Naik N, and Rathna G N 2015  GPU Accelerated Face Recognition 

System with Enhanced Local Ternary Patterns Using OpenCL  Digital Image Computing: 

Techniques and Applications (DICTA), 2015 International Conference on IEEE pp 1-7 

[5] Hou X, Harel J and Koch C 2012 Image signature: Highlighting sparse salient regions IEEE 

transactions on pattern analysis and machine intelligence pp 194-201 
[6] Cuda C. Programming guide 2012 pp 1-175 

[7] Podlozhnyuk V 2007 Image convolution with CUDA (NVIDIA Corporation white paper) p 6 

[8] Harris M 2014 CUDA Pro Tip: Do The Kepler Shuffle Parallel Forall. Np 
[9] Obukhov A and Kharlamov A 2008 Discrete cosine transform for 8x8 blocks with CUDA 

NVIDIA white paper 

[10] Wilt Nicholas 2013 The cuda handbook: A comprehensive guide to gpu programming Pearson 

Education 

CCISP                                                                                                                                                  IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 787 (2017) 012018         doi:10.1088/1742-6596/787/1/012018

6


