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Abstract. The variational level set method is one of the main methods of image segmentation. 

Due to signed distance functions as level sets have to keep the nature of the functions through 

numerical remedy or additional technology in an evolutionary process, it is not very efficient. 

In this paper, a normal vector projection method for image segmentation using Chan-Vese 

model is proposed. An equivalent formulation of Chan-Vese model is used by taking 

advantage of property of binary level set functions and combining with the concept of convex 

relaxation. Threshold method and projection formula are applied in the implementation. It can 

avoid the above problems and obtain a global optimal solution. Experimental results on both 

synthetic and real images validate the effects of the proposed normal vector projection method, 

and show advantages over traditional algorithms in terms of computational efficiency.

1. Introduction 

The variational method and partial differential equation method have already become main methods in 

fields of image processing and computer vision[1-5]. With advantages such as universality of 

multi-model integration, expression flexibility of complex topology and stability of numerical 

computation method, variational level set method has been one of the basic methods of image 

segmentation. Chan-Vese model[6]
 
is a combination of Munford-Shah model[7] and variational level 

set method[8]. It is a variational method of image segmentation which could implement multi-phase 

image segmentation[9], motion segmentation, texture image segmentation[10] and implicit surface 

segmentation[11]. 

Traditional method which uses signed distance function as level sets has certain disadvantages:(1) 

Image segmentation method, which based on the variational level set method, generally uses gradient 

descent method to solve the energy functional, so that the minimum obtained from energy functional is 

probably a local minimum[12], which leads to a high requirement of function initialization. 

Nevertheless, results acquired sometimes are not really ideal, and even wrong; (2) Complicated level 
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set evolution equation needs to be computed in order to get solution of energy functional. This will 

slow down computation speed. To this end, Lie [13] and Bresson [14] replaced signed distance 

functions with binary tag function, transformed Chan-Vese model of two phase image segmentation 

into global optimal model by constraint relaxing, and finally a threshold method can be applied to the 

result to acquire global optimal solution of the original problem. This method avoids impact on 

segmentation results due to initialization of different level sets. Four methods were used to solve this 

model respectively: Gradient Descent Method(GDM) [15], Dual Method (DM) [16], Split-Bregman 

Method (SBM) [17] and Alternating Direction Method of Multipliers(ADMM) [18]. On this basis, a 

new fast segmentation method called Normal Vector Projection Method(NVPM) is proposed. The 

effectiveness and efficiency of the proposed method are validated by comparison of experimental 

results. Also, the proposed method can be generalized to other variational model of image processing. 

The rest of this paper is organized as follows. In Section 2, the binary level set formulation of the 

functional of Chan-Vese model used in our paper is reviewed along with its traditional solution 

method. Our proposed method is discussed in Section 3 and its iterative discrete formulas for 

implementation will be presented in detail. In Section 4, some numerical experiments are given to 

illustrate the effectiveness of our method by comparing with other methods. Finally a conclusion is 

given in section 5. 

2. Convex optimization of Chan-Vese model 

Chan-Vese model, which is based on variational level set method, is a two-phase image segmentation 

Munford-Shah model approximated by piece-wise constant. It divides the image into two types of 

heterogeneous area. Chan-Vese model can be transformed into the following energy functional 

minimization problem through combining the method that use binary tag functions as level sets which 

is proposed by Lie and Bresson. 

 
 

  
2 2

1 1 2 2
, 0,1

, ( ) ( ) (1 )
c
Min E c c f dx c f dx dx


      
  

          (1) 

  :  f x R  is the image that is yet to be segmented which is defined on  . 1 2,  ,      are 

penalty parameters, 1 2,c c c  are piece-wise constants which are used for segmenting the image into 

different areas,  x  is level set function. We assume that there is a closed region 1  , then the 

definition of binary tag function is as follows. 
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Eq.(1) is the energy function contains more than one variable, we solve it through alternating 

optimization method generally, i.e. solve the function under fixed   with respect to c . 

    1 2,  1 1c f dx dx c f dx dx   
   

        (3) 

Then, fixing c  and solving the function with respect to  . By Eq.(1), the formula of energy 

functional minimization about   can be written as 
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where   2 2

12 1 2 1 1 2 2, ( ) ( )    Q c c c f c f . Eq.(4) can be transformed into following problem via 

convex  relaxation and threshold on binary tag function   
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The according gradient descent function about Eq.(5) is  
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After getting  , then project it into the interval between 0 and 1. 

   1 1,1 ,0k kMax Min    (7) 

Finally,   is obtained through threshold technology. 
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3. Normal vector projection method of Chan-Vese convex model and its optimization method 

Through introduction of four methods above, the method[19][20] which uses low-order term instead 

of high-order term and optimize alternately, not only improves computation efficiency, but also 

reduces complexity of energy functional. On the basis of this thought, the normal vector projection 

method is proposed, which uses approximated variable to replace normal vector of curvature term in 

gradient descent function. This will simplify solving process, and then conduct the projection of 

normal vector to constrain the introduced approximated variable directly. This method is more concise 

on the structure of algorithm, moreover, it can guarantee the fast convergence of the energy functional. 

This chapter not only put forward NVPM of Chan-Vese model, but also the optimization algorithm of 

NVPM. 

3.1 Vector projection method 

It is easy to get Euler-Lagrange equation according to Eq.(5) which is depicted as follow. 

  12 1 2( , ) 0Q c c         (9) 

Here the four-order curvature term which is difficult to calculate and the primary source of low 

iteration speed. According to method that has been introduced which utilizes low-order term to replace 

high-order term and alternately optimize each variable so that calculation efficiency is improved. 

Introducing instrumental variable  1 2,
r

p p p  to approximately represent normal vector of  , so  
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p    can be obtained, and the above equation is converted as 

 12 1 2( , ) 0Q c c p    (10) 

Now fix p  to find 1k  , the formula above should be calculated by using  

gradient descent method. 

  12 1 2,t p Q c c       (11) 

The time step is p , now we obtain the iteration function on  . 

   1
12 1 2,k k k

p p Q c c         (12) 

After obtained 1k  , we need to make a projection of 1k   according to Eq.(7). Then fix 1k  . 

We can obtain p  with normal vector projection method directly based on p    . 

  1 1 1 ,  1k k kp max      (13) 

Finally, threshold 1k   according to Eq.(8). 

In summary, we can list the NVPM in a pseudo code as follows. 

Algorithm 1: NVPM for CV model 

Step 1: Initialize unknown values as 0 0, p  

Step 2: For 1,k  solve the following problems alternatively 

    2.1 Sub-problem 1 for 1k  :     1

1min ,k kArg E p      , 

                                1 1,1 ,0k kMax Min   .           

    2.2 Sub-problem 2 for 1kq  :     1

2min ,k k+1p Arg p E p    . 

    2.3 Threshold 1k  : 
1

1 1     0.5

0     

k
k

otherwise

 





  
 


. 

Step 3: The overall loop will be terminated if the stopping criteria (described in 

section 3) are satisfied. 

3.2 Optimization algorithm of normal vector projection method 

The method proposed by Nesterov[21]
  

could accelerate and optimize the process of gradient descent 

through over relaxation. A kind of optimization algorithm of the normal vector projection method is 

given to further improve computation efficiency. An over relaxation parameter  and an intermediate 

variable   are introduced before we solve the gradient descent process of Eq.(24). 

   1
12 1 2,k k k

p p Q c c         (14) 

After getting 1k  , we need to update the over relaxation parameter and then obtain 1k  . 
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  1 1 4 1 2k k      (15) 

Then, update   through intermediate parameter 1k   and over relaxation k  and 1k  . 

   1 1 1 +11k k k k k k            (16) 

We remain need to make a projection of 1k   according to Eq.(7). The rest of the steps are similar 

as the non-optimized NVPM. Via normal vector projection presented by Eq.(26) 1kp   can be got, and 

according to Eq.(8) we obtain 1k   by threshold. 

The pseudo code is shown as follows. 

Algorithm 2: NVPM+ for CV model 

Step 1: Initialize unknown values as 
0 0, p  

Step 2: For 1,k  solve the following problems alternatively 

   2.1 Sub-problem 1 for 
1k 
:     1

1min ,k kArg E p      .  

        Update over relaxation parameter  :  1 1 4 1 2    k k . 

        Update  :   1 1 1 +11          k k k k k k
, 

  1 1,1 ,0k kMax Min   .           

    2.2 Sub-problem 2 for 
1kq 
:     1

2min ,k k+1p Arg p E p    . 

    2.3 Threshold 
1k 
: 

1

1 1     0.5

0     

k
k

otherwise

 





  

 


. 

Step 3: The overall loop will be terminated if the stopping criteria (described in section 3) 

are satisfied. 

4. Numerical experiments and analysis 

In this section, the numerical results of our proposed methods are applied on some real cases and they 

will be compared with different methods (Gradient Descent Method (GDM), Dual Method (DM), 

Split-Bregman Method (SBM), Alternating Direction Method of Multipliers (ADMM)) to demonstrate 

the effectiveness and efficiency of our methods. All the experiments are operated on the same platform 

(Matlab7.8) on a PC( Intel( R) , Core( TM) , CPU i7 2. 60GHz) . The same initial contours and 

initiations of variables for all the methods in each experiment are used in order to have a relatively 

neutral criterion for comparison. 

As described in [22] the iterations need to be terminated when the following criteria are satisfied: 

ⅰ We need to monitor the constraints errors in iterations: 

    1 1

0

1 1 1

k k

L L
R R R  (17) 

with 
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ⅱ During iterating, the relative errors of the solution k should be noticed. They should reduce to 

a sufficiently small level:  

 
1 1

1 1k k k

L L
     (18) 

ⅲ The relative energy error can be chosen as stopping criterion 

 1k k kE E E     (19) 

where, kE  is the energy value. The computation stops automatically when 1k k kE E E  is less 

than a predefined tolerance, which means the energy approaches its steady state. Until now, the 

proposed NVPM and NVPM+ are completed and the effectiveness will be given with extensive 

experiments in the following. 

         

Figure 1. Images for segmentation 

Four images to be segment are presented in Fig.1. There are blurred image, MRI image, character 

image and nature scene image. 

       

(a) GDM 

       

(b) DM 
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(c) SBM 

       

(d) ADMM 

       

(e) NVPM 

       

(f) Optimization Algorithm of NVPM 

Figure 2. Segmentation results with different methods 

Fig.2 (a)-(f) shows the segmentation results of GDM, DM, SBM, ADMM, NVPM model and its 

optimization. From the experimental results, we can see that each method can achieve better 

segmentation results. 
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Figure 3. Comparisons of computational time with different methods 

Comparisons of computational time using different methods for four kinds of images are given in 

Fig.3. According to the results of numerical experiments and comparing to other algorithm, no matter 

optimization or not, the computation rate of our method is always better than DM, GDM, SBM and 

ADMM. Among them, the NVPM optimization algorithm is the fastest, followed by the 

non-optimized NVPM, SBM and ADMM are equivalent and better than DM and GDM, the lowest 

calculation rate of GDM. The advantages of our method in terms of computational speed are verified 

through multiple sets of experiments. 

5. Conclusions 

In this paper, normal vector projection method used for global convex active contour model is 

proposed. This method with a simple structure uses the properties of introduction of auxiliary variables 

to solve energy functional directly. The calculation procedure is simplified to a large extent, and the 

computational efficiency is accelerated at the same time. The comparison of results indicate that our 

approach owns good enough effects and it is a good way to efficiently minimize the difficult 

functional. In addition, the method can also be optimized by acceleration algorithm and good results 

have been obtained. It is supposed to yield shorter running time while the quality of results is identical. 

Our method can also be applied into surface restoration and segmentation, motion segmentation and 

medical image 3D reconstruction in the future work.    
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