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Abstract. This paper presents a new denoising method called EMD-ITF that was based on 

Empirical Mode Decomposition (EMD) and the Improved Thresholding Function (ITF) 

algorithms. EMD was applied to decompose adaptively a noisy signal into intrinsic mode 

functions (IMFs). Then, all the noisy IMFs were thresholded by applying the improved 

thresholding function to suppress noise and improve the signal to noise ratio (SNR). The 

method was tested on simulated and  real data and the results were compared to the EMD-

Based signal denoising methods using the soft thresholding. The results showed the superior 

performance of the  new EMD-ITF denoising over the traditional approach. The performance 

were evaluated in terms of SNR in dB, and Mean Square Error (MSE). 

1. Introduction  

The Empirical Mode Decomposition (EMD) method has recently been pioneered by Huang and al. [1] 

for analyzing the nonlinear and non-stationary signals. The aim of the EMD method is to adaptively 

decompose any signal into oscillatory components called intrinsic mode functions (IMFs) using a 

sifting process. EMD denoising can be based on partial reconstruction or inspired by standard wavelet 

thresholding [2-8]. The basic principle of wavelet thresholding is to cancel all the coefficients that are 

lower than a threshold related to the noise level. However, the performance of wavelet approach relies 

the basis wavelet which is predetermined in advance and on the threshold. A more flexible alternative 

was performed by EMD approach. Several EMD-Based denoising methods using thresholding were 

proposed in [6]. Indeed, it was shown that the direct application of wavelet thresholding to IMFs can 

lead to very bad results for the continuity of the reconstructed signal. Therefore, an EMD interval 

thresholding was proposed (EMD-IT) in which the thresholding was performed to the zero-crossing 

interval as a whole. EMD-IT procedure resembles wavelet thresholding more than directEMD 

thresholding because wavelet thresholding is applied to the wavelet coefficients [6]. The main factors 

affecting the quality of Wavelet Threshold Denoising are denoising threshold and selection of the 

suitable wavelet threshold function. The hard threshold function does not change the local properties 

of the signal, but it can lead to some fluctuation in the reconstruction of the original signal. The hard 

threshold function leads to a loss of some high frequency coefficients above the threshold. In order to 

overcome the drawbacks of the classical threshold functions, Lu Jing-yi et al. proposed an improved 

threshold function by increasing the adjustment factor [9]. A direct application of wavelet improved 

threshold function in the EMD case (EMD-ITF) was considered in this paper. Numerical simulation 

and real data test were performed to evaluate this method, and the results were  compared to EMD soft 

threshold function in terms of SNR and MSE. 
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The paper is organized as follows.  Section II introduces the EMD algorithm. Section III describes 

the EMD-Soft thresholding  and the new proposed method EMD-ITF. The simulation results are 

illustrated in section IV. Finally, section V presents the conclusion. 

2. EMD algorithm 

EMD is an adaptive method to decompose a signal )(tx into a series of IMFs. The IMFs must satisfy 

the following two conditions: (i) The number of maximum must equal the number of zeros or differ at 

most by one. (ii) In each period, it is necessary that the signal average is zero.  

The EMD algorithm  consists of the following steps [1]: 

1. Find local maxima and minima in )(tx to construct the upper and lower envelopes respectively 

using cubic spline interpolation.  

2. Calculate the mean envelope )(tm by averaging the upper and lower envelopes. 

3. Calculate the temporary local oscillation ).()()( tmtxth   

4. Calculate the average of ),(th  if average )(th is close to zero, then )(th is considered as the first 

IMF, named )(tci  otherwise, repeat steps (1)–(3)  while using )(th for ).(tx  

5. Calculate the residue ).()()( tctxtr i  

6. Repeat steps from (1) to (5) using )(tr  for )(tx to obtain the next IMF and residue. 

The decomposition process stops when the residue )(tr  becomes a monotonic function or a 

constant that no longer satisfies the conditions of an IMF. 
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3. EMD Based denoising 

3.1. EMD Soft thresholding 

Having a noisy signal )(ty given by: 

         )()()( ttxty                                                      (2) 

Where )(tx is the noiseless signal and )(t  is independent noise of finite amplitude. In EMD-Soft 

thresholding method, the noisy signal )(ty  was first decomposed into noisy IMFs: ).(tcni  These 

noisy IMFs was thresholded by soft function in order to obtain an estimation of the noiseless IMFs 

)(ˆ tci   of the noiseless signal. In this work the universal threshold is used proposed in [10] and it 

identified as follows: 

  )ln(2 nEC ii                                                            (3) 

Where C is a constant depending of the type of signal that  was set to 0.5 in this work, n is the 

length of the signal and iE is given by [4]: 
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Where 
2
1E  is the energy of the first IMF defined by: 
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A direct application of wavelet soft thresholding [11] in the EMD case: 
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A reconstruction of the denoised signal is given by: 
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3.2. EMD-ITF Denoising  

A direct application of wavelet improved threshold function [9] in the EMD case: 
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A reconstruction of the denoised signal is given by equation (7). 

4. Simulation results 
In this section, we assess our proposed denoising algorithm compared to EMD-soft thresholding 

denoising. The new EMD-ITF approach was applied to five test signals (Doppler, Blocks, Bumps, 

Heavysine and Piece-Regular). The size of the signals was equal to 2048. The method was also tested 

on real ECG signal using the MIT-BIH database [12]. For simulated signals, the variance of the 

additive white Gaussian noise was set so that the SNR before denoising was maintained at 15 dB. The 

original signals and the corresponding noisy versions are depicted in Fig. 1. The SNR before denoising 

of the real ECG signal was 20 dB. Each noisy signals were decomposed into IMFs using EMD process 

and all IMFs are thresholded by the Improved Thresholding Function and soft thresholding.The 

performance of the proposed method was affected by the choice of the   value as shown in Fig.2 that 

depicts the SNR after denoising as function of .  The  values for which the the SNR after denoising 

are maximum are 0.4, 0.2, 0.2, 0.1, 0.1 for ECG, bumps, heavysine, Piece Regular, blocks, and 

Doppler signals respectively. Indeed, the maximum SNR after denoising depends on the signal and .  

A comparative study of two methods considered in this work is presented in Table 1.This table shows 

that the proposed method provides the best results in terms of SNR and MSE for all test signals. 

Therefore, the proposed EMD-ITF outperforms totally the conventional EMD-soft thresholding 

denoising. Fig.3 shows the denoising results of applying EMD Soft and EMD- ITF to simulated 

signals. Fig.4 displays the denoising results of real ECG signal using EMD-Soft and EMD- ITF.  

Table 1. SNR  before and SNR after denoising of the different signals. 

Methods 

SNR (dB)(after denoising)  

      𝟏𝟓𝒅𝑩 

Blocks Bumps 
     𝟏𝟓𝒅𝑩 

      𝟏𝟓𝒅𝑩 

 

Heavysi

ne 

 

       𝟏𝟓𝒅𝑩 

Doppler 

Piece-

Regular 
     𝟏𝟓𝒅𝑩        𝟐𝟎𝒅𝑩 

 

ECG 

EMD-Soft 20.1370 20.4058 26.4670 22.2368 21.6292 26.2561 

EMD-ITF 20.6421 23.3905 26.6830 24.4025 22.3292 28.1154 

Methods MSE 
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Figure 1. (a). Test signals with n=2048. (b).Noisy test signals SNR=15dB 

 

 
 

 

 

Figure 2. Performance evaluation of EMD-ITF denoising method. 
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Blocks

Bumps

Heavysine

Doppler

Piece-Regular

EMD-Soft 0.0854 0.0295 0.0214 0.0005 0.0220 0.0023 

EMD-ITF 0.0760 0.0148 0.0204 0.0003 0.0187 0.0015 
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Figure 3. Denoising results in SNR =15dB of test signals corrupted by Gaussian noise. 

           
 

Figure 4. Denoising results in SNR (20dB) of real ECG signal 

5. Conclusion 

A new signal denoising method is proposed based on empirical mode decomposition and the Improved 

Thresholding Function to suppress noise in the signal and improve the output SNR. The proposed 

method was tested on real ECG signal and simulated signals (Doppler, Blocks, Bumps Heavysine, and 

Piece- regular) corrupted by white Gaussian noise. Based on SNR and MSE, the simulation results are 

in favour of the new EMD-ITF denoising method. We showed that the new approach is useful for 

removing noise 
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