
 

 

 

 

 

 

Bayesian Framework with Non-local and Low-rank 

Constraint for Image Reconstruction 

Zhonghe Tang, Shengzhe Wang, Jianliang Huo, Hang Guo, Haibo Zhao
 
and 

Yuan Mei 

Department of Guided and Information Engineering, Southwest Institute of 

Technology and Physics, 630811, Sichuan, China 

E-mail: sinawang21@126.com, huoliaang@163.com, 408306714@qq.com, 

haibozhao125@sina.com, meiyuan1984@foxmail.com 

Abstract. Built upon the similar methodology of  ‘grouping and collaboratively filtering’, the 

proposed algorithm recovers image patches from the array of similar noisy patches based on 

the assumption that their noise-free versions or approximation lie in a low dimensional 

subspace and has a low rank. Based on the analysis of the effect of noise and perturbation on 

the singular value, a weighted nuclear norm is defined to replace the conventional nuclear 

norm. Corresponding low-rank decomposition model and singular value shrinkage operator are 

derived. Taking into account the difference between the distribution of the signal and the noise, 

the weight depends not only on the standard deviation of noise, but also on the rank of the 

noise-free matrix and the singular value itself. Experimental results in image reconstruction 

tasks show that at relatively low computational cost the performance of proposed method is 

very close to state-of-the-art reconstruction methods BM3D and LSSC even outperforms them 

in restoring and preserving structure. 

1. Introduction 

The search for efficient image denoising methods still is a valid challenge. The local smoothing 

methods and the frequency domain filter aim at a noise reduction and at a reconstruction of the main 

geometrical configurations but not at the preservation of the fine local structure, details and texture. 

Early local denoising method relied on various smoothness assumptions, such as anisotropic filtering, 

total variation or image decomposition on fixed basis. In some degree, non local methods all explicitly 

exploit the self-similarities of natural images and represent each clean image patch as a linear 

combination of a few elements from a basis set called a dictionary. In essence, they are all data driven 

representation methods. However, the difference among these denoising algorithms is the source of 

atoms in the dictionary and the constraints to the representation coefficients. In NLM [1], the atoms 

are from the noisy image and the coefficients depend on the similarly between two noisy image 

patches. Based on a nonlocal regularity assumption, the NLM [1] estimates an unknown pixel by a 

weighted average of local and non-local pixels throughout the entire image.  To BM3D [2], it is based 

on classical fixed orthogonal dictionaries and requires the corresponding representation coefficient to 

be sparse. It restores noisy patches by finding more similar patches in the noisy image using patch 

matching, stacking fragments together into a 3D signal group, and denoising the group by using 

collaborative filtering. Inspired by BM3D[2] , K-SVD[3] scheme, employs a joint sparse 

decomposition based on a learned, possibly over-complete, dictionaries adapted to specific image 
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patches and assumes if two image patches are similar[4], the coefficients should be similar in structure 

or the distribution of nonzero entries. 

Compared with conventional NLM [1] and BM3D [2], LSSC [4] takes both the structure and the 

sparsity into consideration. However, there still exist some shortcomings. To improve universality of 

dictionary, its size should be huge, but the learning of a huge dictionary and the determining of a high-

dimensional but sparse coefficient matrix are very computationally expensive. In essence, the 

structured similarity between the columns of coefficient matrix is equivalent to the constraint that the 

image matrix or coefficient matrix [2, 4, 5, 6, 7] has a low rank. Data matrix stacked by similar image 

patches is born with low rank characteristic [4, 7], but this property is rarely exploited directly in 

spatial domain.  

In this paper, an image denoising method is proposed which is built upon the methodology of 

‘grouping and collaboratively filtering’. It combines two now classical ideas into a single framework: 

The low rank joint decomposition and the non-local means idea. The fundamental idea is to convert 

the problem of removing noise to a low rank matrix approximation problem and a weighted nuclear 

norm is defined to replace the classical nuclear norm. we focused primarily on low rank constraint in 

the spatial domain instead of the transform domain. For each image patch centered at the current pixel 

a similar patch series is found in a search window. The numerical rank of corresponding noise-free 

matrix is predicted based on the estimation of noise variances and singular values of noisy data matrix, 

then some significant singular values are retained according the numerical rank. Then, for each 

retained singular value, an adaptive thresholds or weight are calculated. Then shrinkage is carried out 

on the retained singular values. Lastly, the recovered image patch can be easily reconstructed based on 

the shrunk singular values. 

2. Related work 

Essentially there are three types of image denoising method: local, non-local and the mixture of them. 

Our approach is a non-local approach. Thus, we will only discuss the most related non-local 

techniques. 

     In the non-local image denoising, we always are required to search n-1 similar image patches ,i js  , 

1, , 1j n   for a given reference patch is  from a search window iW  sharing the same centre with 

given reference patch, then group them into an image patch set ,1 , 1{ , , , }i i i i ns s s S . Measuring the 

similarity within patches set iS  is one of fundamental problems in image denoising. Another key issue 

is to how to explore the similarity and gather all the helpful information about the noise-free version of 

is  distributing among the n  image patches to restore the noisy patch is . The key prior is these image 

patches iS  are similar and correlated[8]. 

In the conventional NLM [1], the weight ,i jw  is computed based on the similarity between the 

current reference patch is  and candidate patch ,i js . Then, the noise-free version of the estimated is  is 

computed as  

                                        , , , , ,

1 1

ˆ ˆ ˆ, /
n n

i i j i j i j i j i j

j j

s w s w w w
 

                                             (1) 

To find enough image patches whose noise-free versions are almost same as that of given is , the 

size of search window iW  should be very large enough, but it will cause the search very 

computationally expensive. At the same time, only the similarity between is  and ,i js  is considered 

and exploited instead of any two patches in the n  patches set. 

In the BM3D [2] method, A shrinkage in 3D transform domain such as wavelet shrinkage and 

Wiener filter are applied on the 3D coefficient array of patch set iS  to suppress noise. The result is 
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obtained by synthesizing a clean image from the de-noised patches. However, essentially fixed 

orthogonal transform is a kind of local processing, and only local interactions of neighboring pixels 

and patches are considered or the similarity among a local range is exploited. The definition of local 

range depend on the grouping order how the 2D patches are grouped into the 3D array. In a word, it is 

not completely non local de-noising method. 

To solve the mentioned issues, some sparse models for de-noising are proposed. In the K-SVD [3], 

an over-complete dictionary D  adapted to specific patches will be learned. It is assumed the each 

image patches is  can be sparsely represented by the over-complete dictionary D . To determine the 

sparse coefficient, we need solve the following optimization problem 

min pl
 , 0 1p   and | |is   D                                              (2) 

To exploit the structure self-similarity of natural image, in the LSSC, some similar image patches 

, ,i js  1, , 1i n   are employed to restrict the sparse coefficient of is  and its structure. An 

important assumption in LSSC [4] is that the sparse coefficients of some similar image patches , ,i js  

should possess similar structure and decomposition, especially the distribution or locations of nonzero 

entries. To determine the sparse coefficient matrix A , we need solve the problem 

,
min ,| |ip q

 
A

A S DA                                                                 (3) 

In fact, the similarities of the structures of the image patches can be represented from many aspects, 

not only limited in the distribution of nonzero entries. At same time, all the denoising methods based 

on overcomplete dictionary suffer from a drawback: the learning of overcomplete dictionary and the 

determination of structured coefficient vector or matrix are very computationally expensive [9,10]. 

3. Image denoising model based on non-local and low-rank 

3.1. Image denoising and low-rank decomposition 

Concretely, firstly let us define a similar image patch set iS  for the given patch is , namely, 

, , ,{ | sim( , ) , }i i j i i j i j is s s s  S W , where ,sim( , )i i js s is used to measure the similarity between 

reference patch is  and candidate block ,i js . Two more similar patches lead a higher ,sim( , )i i js s value. 

And the higher the similarity threshold  is, the less the image patches with higher similarity are 

grouped into the set iS . The effectiveness of de-noising degraded image largely depends on how to 

measure the similarity between two patches and how to utilize the similarity in the de-noising methods. 

In this paper, in order to simplify the problem the simple Euclidean distance is used to measure the 

similarity. The focus is to exploit structure self-similarity of natural image by low-rank approximation 

or decomposition to restore the noisy patches. 

In this paper, the image patch ,i js  is stacked as the column vector, and then image patch array 

iS can be considered as a 2D data matrix 
m n

i R S , where n  is the number of patches in the patch set 

iS  and m  is the number of the pixels in each image patch. In general case, n  is bigger than m . 

According the analysis above, the patch group iS  can be decomposed into three parts: commonness 

information
m n

i R A , the difference  
m n

i R E  , and the noise
m n

i R N , 

i.e., , rank( ) min( , ),i i i i i m n   S A E N A . 0i l
m n E .In fact the commonness and difference 

are relative. Generally, the bigger the rank of commonness rank( )iA  is, the less the energy 2i l
E of 

difference iE  is and the sparser the difference is. That means by adjusting the rank of the commonness, 

we can assign partial difference to the commonness iA  and other unimportant difference to the 

CCISP                                                                                                                                                  IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 787 (2017) 012008         doi:10.1088/1742-6596/787/1/012008

3



 

 

 

 

 

 

uncertainty information iN . At same time, to image de-noising problem both iA and iE are signals we 

need recover[9,11,12]. It is not necessary to recover the commonness and difference separately. 

Therefore, the low-rank sparse decomposition can be simplified as a low-rank decomposition or 

approximation problem mathematically 

, rank( ) min( , )i i i i m n  S A N A                                                             (4) 

Therefore, our focus is to solve the following optimization problem 

                                     2

* min rank (A),s.t. ||S -A||i i l
 

A
A                                                             (5) 

The parameter   depends on the variance of noise. Applying the relaxation to the problem (5) 

yields a new optimization problem as follows 

                                 
2* 1

arg min{ rank( )}
2

i i F
   

A

A A S A                                                 (6) 

Unfortunately, (6) is a highly no convex optimization problem, and corresponding minimization 

problem is extremely difficult (it always is NP-hard and hard to approximate). At present, no efficient 

numerical solution is known[13].  

  To solve the problem (6), Candes ect. [8] replaced the rank( )A with the nuclear norm 

i

i



A  where i  is the singular value of data matrix A . Simple replacement yields a tractable 

optimization problem:  

                                             
2*

*

1
arg min{ }

2
i i F

  
A

A A S A                                                    (7)  

Fortunately, this optimization problem (7) is convex and can be solved efficiently. If we denote the 

singular value decomposition of data matrix iS  as
T

i i i iS  U V , where ,1 ,( , , )i i i rdiag    , 

min( , )r m n and ,i j is singular value of data matrix iS  (including zero). Then, the optimal solution 

of (8) is computed as [14, 15] 

  
21

( ) arg min{ }
2

i i FA
T 


  S A S A                                                           (8) 

Here, ( )iT S  is the singular value shrinkage operation and can be defined as  

      ,: , {( ) }T

i i i i i i jT T T diag         S U V                                                (9) 

Where  t


 denote the positive part, defined as max(0, )t . The remarkable difference between 

rank( )A  and *| ||A  is that the former only depends on the number of nonzero singular values and not 

the specific value, but *| ||A  is equal to their sum and depends directly  on their values. This is just 

like the difference between 0l -norm and 1l -norm. 

Essentially, the singular value shrinkage operation simply applies a soft-thresholding rule to the 

singular values of iS . Just like the common soft thresholding denoising in wavelet domain [16]. The 

determination of proper parameter or threshold  is a key issue. It is necessary to utilize an adaptive 

threshold determined by the similarity of patch set, the variance of noise and the distribution of signal 

information and noise[17]. 

3.2. Effect of perturbation on the rank and the truncated SVD 
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Suppose that iS is a matrix containing many column signals that are contaminated with a certain level 

of noise. The SVD resolves the data in noisy iS into r mutually orthogonal components [18] as 

following 

, , , , ,

0 0

r r
T T

i i i i i j i j i j i j i j

j j

u v z 
 

    S U V                                                    (10) 

Where , , ,

T

i j i j i jz u v . ,i ju and ,i jv are column vectors of orthogonal matrix iU and iV  . In other 

words, the SVD decomposition (10) can be regarded as Fourier expansion or wavelet decomposition, 

and consequently, ,i j can be interpreted as the proportion of signal iS  lying in the “direction” of ,i jz  

whose rank is low and equal to one. Therefore, the SVD can be a useful tool in applications involving 

the need to sort through noisy data and lift out relevant information. 

The noise-free version iA  always is assumed to be low-rank. But in most case, the matrix iA  and 

its rank is unknown. Whether the rank of noise-free matrix can be estimated accurately based on the 

noisy matrix is a key problem to low- rank decomposition. The effect of noise on singular values is 

important for the estimation the rank of iA . The following theory will show the perturbation of 

singular values due to a certain level of noise. 

Theorem.1 Perturbations and Rank [18]. For
m nA , where m the size of image is patch and n  

is the number of image patches. Denote the noisy version of A  as
m nR S = A + N . where matrix 

N contains perturbation or noise. If we let 1 2{ , , , }r    and 1 2 r{ , , , }    denote the singular 

value (nonzero as well as any zero ones) of matrix S and A as, min{ , }r n m  , then 

2

2t t   N , for each 1, ,t r                                                             (11) 

The proof can be found in the literature [18].  

This theorem explains why singular values are the primary mechanism for numerically determining 

the rank of a matrix. If the rank of noise-free signal matrix A  is equal to l , then the singular value 

, 1, ,p p l r    should be exactly zero. Therefore, Theory above can guarantee that r l  singular 

value of the computed , 1, ,p p l r    cannot be larger than
2

2| ||N .  Therefore, if the singular 

values p  obeys 

                                  
2

1 2 2 1|| ||q q r            N                                      (12)   

Then, it’s reasonable to consider q  to be the numerical rank of nosiy free signal iA .   is a 

threshold depending on the standard deviation of noIn the general case, the perturbation 
2

2
N  is 

unknown. Fortunately, if a perturbation is Gaussian white noise, relatively accurate estimation of 
2

2
N  

can be obtained. Based on the estimation, we can predict the difference between the singular values for 

A  and S is just related to
2

2
N .  

To verify the theory above, zero mean white Gaussian noise with standard deviation  =30 is 

added to the 512×512 Barbara image. From the noisy image and the noise-free image, four 7×7 

image patch pairs ia  and  is  are selected randomly. For each noisy patch is  , the top most similar 60 

image patches are choose from a 25×25 search window. Then, the r singular values ,t t  , t  =1,…,r 

(r=49) of iS  and iA  are computed. Fig.1 show the difference t t te     between t  and t .  
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(a)                                  (b)                                       (c)                                   (d) 

Figure 1.  the difference of the singular values between the noisy data matrix Si and the noise-free data 

matrix Ai. (a) the first example (b) the second example (c)the third example (d) the fourth example 

 

It can be easily observed that there exist many similarities[19]. All the singular values t  can be 

divided into two parts. The first parts is , 1, ,t st t  , and corresponding tz  represent the 

commonness and the similarity among the iS  and noise has little effect on the singular values when t  

is bigger or t  is small. As the singular values decrease, the difference increases. The second part 

1, , ,t st t r   is small and always close to zero. And corresponding tz always represents the 

randomness and uncertainty information, such as noise and the weak difference of contents. As 

t increase, the difference decrease. When t  is close to rank of noise-free data matrix, the difference  

te  reaches its peak point. In general case, the most information of signal is concentrated on the first 

part, and the second part is not important for the signal recovery. 

3.3. Threshold determination of the nonlocal and low-rank denoising  

For the singular value shrinkage operation, the key issue is to select a reasonable threshold. Obviously, 

applying a fixed threshold ,i k  ( k is the truncated location and is equal to rank( )iA ) to all singular 

values t  is not reasonable. Although, the truncation can remove most noise, much residue still appear 

in the retained singular values. At same time, the noise is always distributed uniformly across the ,i jz , 

but signal is not. Therefore, it is necessary to design an adaptive threshold for each retained singular 

values , 1, ,t i k   to remove the noise contained in ˆ
iS  and preserve the information of signal. 

According the analysis and experiment above, a fact can be found that the bigger the singular 

value , 1,t i k   is, the less the difference is between the noisy matrix and the noise-free one. 

Namely, the bigger singular value is, the smaller the threshold should be. In a word, to adaptively 

adjust the parameter , the parameter   is assumed to be proportional to noise variance and in inverse 

proportion to singular value. Therefore, we adopt the following strategy for determining the 

parameter ,i j   

2

,,

,

i

i ji j

i k

c if j k

else










 



                                                      (13) 

where ik is the estimation of the rank of iA  and 
2  is noise variance, ,i j  is the thj   singular 

value of iS , and c  is predefined constants. For this, the noise standard deviation   is estimated using 

a simple gradient-based estimator as [20,21],   

          
 1.4826 median median( )Y Y                                               (14) 

where Y is the vectorized form of the gradient of the input nosiy image Y , which is calculated as 
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2 1
0.4082 vec 

1 0
Y Y

   
     

  

                                            (15) 

Here, vec( )  and  denote the vectorization operation and the convolution operation, respectively. 

3.4. The main frame of proposed denoising scheme 

To conclude this section, we will summarize the main step of the proposed image denoising method. 

The concrete process is shown as follows .  

Grouping the similar patches. For the given reference patch is , n top most similar patches ,i js  are 

selected based the similarity between is and ,i js . Then, these vectorized patches are grouped into data 

matrix ,1 ,[vec( ), , vec( )]i i i ns sS .  

Estimating the rank of underlying matrix iA . Estimate the noise standard deviation   and 

parameter n    , and then compute the singular values of matrix iS . Lastly, estimate the 

numerical rank ik  based on theory 1. 

Applying the adaptive shrinkage to each singular values. Based the rank estimated rank ik  , 

truncate the singular values and compute the adaptive parameter ,i t . Then, apply the shrinkage to the 

retained singular values ,i t . 

In our implementation, the image patches are selected with overlapping regions. Thus, each pixel is 

covered by several de-noised patches. In this paper, the value of each pixel in images is determined by 

taking the average of all the estimations for same location. In fact, we observe a fact the lower the 

estimated rank is, the better the quality of recovery is. Intuitively, an aggregation can be performed by 

a weighted averaging at those pixel positions where there are overlapping block-wise estimates just 

like BM3D. This is one direction of our future research. 

4. Experimental results 

In this section, the performance of the proposed denoising scheme is tested. The main innovation in 

the frame is the combination of non local idea and low rank.  

Throughout this study, the patch size in our implementation is set as 7×7 for 30   and 9×9 for 

30   .The size of search window is fixed as 25×25. The parameter   is set as n   where n  is 

size of patch and  is a constant and chosen according to an empirical rule. The parameter   [4] is set 

as 32 / n for images scaled between 0 and 255 to all test images, which has shown to be appropriate 

in all of our non local denoising experiments. Iterations times are set as 5. In the experiment,   and 

c is fixed as 0.035 and 115. 

Table 1. The PSNR(dB) values of the denoised images with respect to different noise levels of 

Gaussian noise. 

Image σ NLM K-SVD BM3D LSSC K-LLD Proposed 

Barbara 

5 37.06 38.11 38.33 38.48 36.61 38.51 
10 33.16 34.42 34.97 34.97 33.03 34.93 
20 30.26 30.81 31.74 31.57 29.05 31.59 
25 29.08 29.58 30.72 30.47 27.27 30.51 
50 25.66 25.58 27.23 27.06 23.20 27.18 

Fingerprint 

5 35.15 36.66 36.59 36.70 35.85 36.71 
10 30.99 32.42 32.43 32.57 31.55 32.62 
20 27.25 28.45 28.87 28.78 28.14 28.87 
25 26.14 27.25 27.70 27.62 26.99 27.78 
50 22.96 23.25 24.53 24.25 22.34 24.55 

Lena 5 37.94 38.62 38.71 38.69 37.61 38.61 
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10 34.36 35.51 35.94 35.83 35.12 35.58 
20 31.61 32.38 33.07 32.90 32.37 32.77 
25 30.36 31.36 32.08 31.87 31.34 31.63 

50 27.32 27.75 29.05 28.87 25.15 28.81 

Man 

5 37.01 37.50 37.80 37.89 36.24 37.86 
10 33.11 33.55 33.94 34.06 33.09 33.97 
20 29.72 30.05 30.54 30.64 30.12 30.60 
25 28.38 29.08 29.62 29.63 29.22 29.59 
50 25.33 26.08 26.81 26.69 24.38 26.71 

Couple 

5 36.75 37.30 37.49 37.45 35.89 37.39 
10 32.90 33.48 34.02 33.98 33.08 33.91 
20 29.01 30.02 30.76 30.69 29.92 30.77 
25 27.99 28.88 29.72 29.61 29.02 29.71 
50 24.58 25.29 26.46 26.30 23.20 26.37 

For performance evaluation, several common test images are considered (including Barbara, Lena, 

Figureprint, Man and Couple) which are corrupted by additive white Gaussian noise with standard 

deviation  {5,10,20,25,50}. To illustrate the proposed denoising method more clearly and fully 

demonstrate the performance gains from the combination of non-local and low-rank, the proposed 

method is compared with five state-of-the-art methods which include NLM[1], BM3D[2], K-SVD[3], 

LSSC[4], and K-LLD[6]. Except LSSC algorithm, all the results are based on the source codes or 

executables released by the original authors. The default parameters are employed in the comparison 

algorithms. We try to realize LSSC. Unfortunately, our results are inconsistent with the original 

literature. To make a fair comparison, all the evaluation indexes of LSSC are from the literature [4].  

4.1. Comparison of quantitative evaluation 

The PSNR results on five test images are reported in Table 1 for different noise variance
2 . The best 

performance, the second best and the third best is highlighted by red, green, and blue color in each cell, 

respectively. From table 1, we can conclude that the proposed non-local and low-rank denoising 

method significantly outperforms NLM, K-SVD and K-LLD. In term of PSNR, BM3D produce state-

of-the-art result, however the results of the three schemes are nearly the same. Even on a certain test 

image containing similar structure pattern (edge and texture), such as Figureprint and Barbara, 

proposed scheme outperforms the BM3D and LSSC. That demonstrates low-rank is very suitable for 

capturing and restoring the patches with similar structure. For Barbara, when variance of noise is low, 

performance of proposed method outperforms other schemes. But as noise level increase, our method 

is not better than BM3D, but still better than LSSC. The reason is that when noise is weak, it is easy to 

capture the common pattern contained in data matrix. As the noise increase, the extraction of patterns 

becomes more difficult. On contrary, for the figureprint image, their local patterns are single and play 

a main role. No matter how strong the noise is, it is easy to capture the corresponding local pattern. 

Therefore, for Figureprint our scheme always outperforms the BM3D and LSSC. 

It is not surprising that our method shows outstanding performances for the test image containing 

some textures or structure patterns. For Barbara image, the proposed method outperforms the K-SVD 

and NLM, and it is superior to K-SVD by 0.4~1.6dB and to LSSC by 0.2 dB. For fingerprint image, 

proposed method outperforms the BM3D, LSSC, K-SVD and NLM, and on average it is superior to 

BM3D by 0.1~0.2dB, to LSSC by 0.1~0. 3dB and to K-SVD by 0.1~1.3dB. 

Table 2. The SSIM results for different standard images and several denoising methods. 

Image σ NLM K-SVD BM3D K-LLD Proposed 

Barbara 

5 0.944 0.964 0.965 0.951 0.966 

10 0.928 0.934 0.942 0.920 0.941 

20 0.867 0.881 0.923 0.851 0.919 

25 0.825 0.850 0.887 0.804 0.892 

50 0.671 0.713 0.794 0.572 0.805 
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Fingerprint 

5 0.965 0.987 0.987 0.985 0.988 
10 0.948 0.968 0.968 0.964 0.969 

20 0.889 0.922 0.929 0.924 0.933 

25 0.859 0.898 0.911 0.903 0.913 

50 0.712 0.775 0.830 0.778 0.838 

Lena 

5 0.914 0.946 0.944 0.928 0.951 
10 0.901 0.910 0.916 0.902 0.916 

20 0.837 0.863 0.877 0.864 0.872 

25 0.790 0.843 0.861 0.840 0.863 

50 0.674 0.761 0.799 0.552 0.801 

Man 

5 0.895 0.951 0.954 0.937 0.954 
10 0.873 0.900 0.907 0.887 0.908 

20 0.784 0.815 0.833 0.817 0.833 

25 0.724 0.779 0.805 0.789 0.804 

50 0.597 0.663 0.705 0.561 0.707 

Couple 

5 0.895 0.950 0.951 0.923 0.952 
10 0.877 0.897 0.909 0.890 0.909 

20 0.787 0.815 0.848 0.819 0.848 

25 0.745 0.779 0.820 0.793 0.818 

50 0.566 0.632 0.706 0.562 0.695 

Compared with PSNR, SSIM is a popular evaluation for measuring the content and structure 

similarity between two images, which have been proved to be inconsistent with human eye perception. 

To understand how the combination of low-rank decomposition and non-local idea restores the 

structure, we also compare the SSIM of the proposed algorithm and other leading denoising 

techniques in the literature at different noise levels for 5 test images. The SSIM results on five test 

images are shown in table 2. The best performance and the second best are highlighted by red and 

green font in each cell, respectively. We conclude the proposed denoising method has achieved 

competitive SSIM performance to BM3D, K-SVD, KLLD and NLM for the most test images. It is not 

surprising that BM3D achieved some competitive PSNR, but in term of SSIM the proposed method is 

best. The success owe to the fact the proposed method aims to restore and preserve the local structure 

not minimize the numerical error. 

 Note that the parameters have not been optimized for speed and for quality in this experiment. They 

are set just based on experience. Optimized parameters may further improve the performances. This is 

another direction of future research. Because all the source codes are developed by different program 

language, it is not fair to measure the speed only depending on running time. Intuitively, all the 

algorithms (K-SVD, BM3D and LSSC) need search some similar image patches, the time spent on the 

search should be nearly same. But for time spent for the computation of the coefficient matrix, LSSC 

are computationally expensive. At same time, K-SVD and LSSC must learn a overcomplete dictionary 

based on a large amount of samples.  It is natural conclusion that the proposed method is faster than 

LSSC and has the nearly same speed as BM3D algorithm. 

4.2. Visual comparisons 

Even though BM3D and LSSC perform a little better in terms of PSNR, they suffer from classical 

artifacts, as shown by the example of Fig.2 and Fig.3. Fig.2 shows the denoising results of Barbara 

image ( 30)   obtained only by BM3D, K-SVD, NLM and proposed method due to space limit. The 

visual comparisons of the detail and local region, especially the regions containing certain structure 

and texture, show that proposed method provides better visual quality. Some edges and textures are 

blurred even lost in BM3D, K-SVD and NLM, but they are better preserved in the proposed method.  

In the first row of Fig.3, a certain texture structure is contained in the original image patch (as 

shown in Fig.3 (a1)). Compared with the results of the K-SVD, NLM and BM3D ( 30)  , our result 

is more clear and complete. On the contrary, in other result there exist some obvious blur and loss. In 

the second row of Fig.3, in the original image block (as shown in Fig.3 (a2)) contains a straight edge. 
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Compared with the results of the K-SVD, NLM and BM3D, the edge in our result is clear and straight. 

However, the edge of compared algorithms is seriously deformed and bent. In the smooth region with 

a very weak structure (as shown in Fig.3 (a3)), noticeable reconstruction artefacts appear in the results 

obtained with BM3D, because some noise is considered as detail or structure. Unfortunately, in some 

degree our algorithm only aims to restore the main structure and loses some weak structure (shown in 

last row of Fig.3). The main reason is the truncation of SVD due to the inaccurate estimation of the 

rank of the corresponding noise-free data matrix. The loss of weak structure originates from the 

inaccurate truncation of singular values. Increasing the size of patch can avoid the weak structure loss. 

But it will increase the computational complexity of patch matching. 

 

          
 

                             (a)                                   (b)                              (c)                                    (d)   

Figure 2. Visual comparisons of Barbara (a) BM3D (b) K-SVD (c) NLM (d) Proposed method. 

Original BM3D K-SVD NLM Proposed 

(a1)      

(a2)      

(a3)      

(a4)      

Figure 3. The local detail and structure comparison 

5. Conclusion 

In this paper, a simple but effective framework for image denoising is presented which works by 

exploiting the merits of self-similarity and similarity matrices low rank approximation. The weighted 
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nuclear norm is defined and used to replace the classical nuclear norm to improve adaptivity of the 

threshold used in the singular value shrinkage. The corresponding problems are effectively tackled. 

We need to take several practical steps: finding similar patches for each reference patch, computing 

the singular values of noisy data matrix and estimating the rank of corresponding noise-free data 

matrix, executing low rank approximation for each data matrix based on the weight matrix, 

reconstructing low rank matrices and obtaining denoised image. Experimental results demonstrate that 

at relatively low computational cost the proposed method is very close to state-of-the-art denoising 

technique BM3D and LSSC even  outperforms them in some images containing many structure and 

texture in terms of both PSNR and SSIM. 
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