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Abstract. Nanotubes are generally not perfectly straight cylinders and the local curvature can
influence transport properties. As shown by da Costa [1], charged particles moving on a curved
surface experience an effective potential which modifies their dynamics. In this paper, we solve a
one-electron Schrödinger equation in a distorted nanotube with open boundary conditions. We
find that the deformations may open bandgaps suggesting their use in the design of nanotube-
based electronic devices.
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1. Introduction
Single-walled nanotubes (SWNT) are made by rolling up a sheet of graphene into a cylinder.
Graphene consists in a 2D honeycomb lattice of carbon atoms and because of its symmetries,
one must view it as a hexagonal Bravais lattive with a two-atom basis. The distance between
two nearest neighbours carbon atoms is about 0.142 nm. As there is one π-electron per carbon
atom that is not involved in a covalent σ bond, there are as many valence electrons than carbon
atoms and these electrons can propagate along the nanotube with peculiar properties [2].

This paper is concerned with ballistic electron transport, which is known to be drastically
affected by variations of the tube geometry [3, 4] and therefore, of the local curvature. To simplify
the study, we will restrict to physical situations where short-range electron-electron interactions
have only weak effects: in practice, deviations from the behaviour of non-interacting electrons
occur at low temperature and for nanotubes of small transverse size [5].

Our aim is not to make a quantitatively realistic description of deformed nanotubes, but to use
a simple independent electron approach in order to access qualitatively the ballistic transport
regime, and possibly, understand the kind of impact that curvature may have on electronic
band structure. To do so, we will consider deformed nanotubes in the following situations:
shrunk nanotube, nanotube with a bump and a wavy peapod. The Schrödinger equation will
be solved numerically for a single particle moving in the deformed cylinder, taking into account
the modification of the kinetic energy caused by the non-Euclidean geometry and the effective
potential induced by curvature. Then we will determine and discuss the transmittances as a
function of the injection energy for all cases.
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2. Differential geometry of SWNT

In their natural state, nanotubes are not perfectly straight cylinders and a practical way to model
2D carbon lattices is to work in the vanishing lattice spacing approximation: all characteristic
lengths (such as de Broglie wavelength of electrons) are considered as large with respect to
primitive lattice vectors (typically a ≈ 2.46 Å). Hence, the discrete lattice appears as a smooth
curved surface that is locally homeomorphic to R

3.
For a curved surface parametrized according to r
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the induced metric tensor on the surface (or first fundamental form) is defined as

gij = ∂ir.∂jr =
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e2.e1 e2.e2

)
(1)

In this expression, Einstein’s summation convention on repeated indices was used, as will also
be done in the remainder of this paper. The second quantity of interest is the shape tensor (or
second fundamental form) defined as

hij =
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)
(2)

These two objects are needed for computing the mean and Gaussian curvature scalars M and
K, as prescribed by:
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(3)

where R1, R2 are the local principal curvature radii and gij denotes the inverse metric of gij .
For a graphene sheet presenting one smooth ripple a relevant set of parametric equations is

simply found to be x = ρ(q) cosφ, y = q, z = ρ(q) sinφ, where q ∈ R
1 and φ ∈ S

1 (here
the axis of the nanotube is chosen to be the y-axis). With such parametrization, the first and
second fundamental forms are respectively:

gij =

(
ρ(q)2 0
0 1 + ρ′(q)2

)
, hij =

1√
1 + ρ′(q)2

(
ρ(q) 0
0 −ρ′′(q)

)
(4)

3. Quantizing constrained particles on a curved surface
The problem of a free quantum particle moving in a curved surface was solved by R. C. T.
da Costa [1] in a seminal paper published in 1981. da Costa approach has ever since been
successfully applied to a wide range of two-dimensional systems ([6],[7],[8]) and experimental
verification was done in [9] by measuring the high-resolution ultraviolet photoemission spectra
of a C60 peanut-shaped polymer.

Introducing a confining potential given by an infinite square well in the normal direction, da
Costa found that in-plane and out-of-the-plane dynamics decouple (adiabatic approximation) in
such a way that the Schrödinger operator describing the particle reduces to [1]

H = − �
2

2m

∑
i,j

1√
g

∂

∂xi

(√
|g|gij ∂

∂xj

)
+ Vgeo, (5)

where g = det gij and the geometric potential is given by

Vgeo = − �
2

2m

(
M2 −K

)
. (6)
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For the parametrization of the SWNT seen before, this potential can be found analytically as:

Vgeo = − �
2

8m

[1 + ρ′(q)2 + ρ(q)ρ′′(q)]2

ρ(q)2[1 + ρ′(q)2]3
. (7)

Therefore, to obtain the stationnary states of the Hamiltonian, one must solve:

Ψ′′ +
ρ′

ρ
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]
,Ψ′ +

(
1 + (ρ′)2

) [2m
�2
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ρ2

]
Ψ = 0. (8)

E is the total energy, Ψ are the longitudinal eigenfunctions and l� the angular momentum.
Taking Robin boundary conditions, solutions are used to compute the probability currents

density j = �

2mi

(
Ψ∗Ψ′ −ΨΨ∗′

)
and the transmittance T = jtrans

jinc
. From these expressions,

we implemented a MAPLE code, with electron effective mass me = 5.68× 10−27meV.s2/nm2.

4. Results
As shown in Figs. 1a, 2a and 3a, we considered a SWNT with a single bump, a single pinch
and a wavy structure. Taking R as the radius of the straight nanotube, the corrugation was
introduced by using

ρ(y) = R± ε

2

[
1− cos

(
2
nπ y

L

)]
(9)

to generate the surface of revolution. ε is the strength of the deformation, the + sign was used
for the single bump and wavy structures, the − sign for the pinched tube. We used n = 1 for
the pinched/bumped nanotubes, and n = 2 , 3 , 4 , 5 , 6 for the wavy structures.

da Costa potential for a pinch and a bump is depicted in Figs. 1b and 2b, respectively. As the
bump has only positive Gaussian curvature, the pinched case, due to its deeper potential well,
lowers the quasibound energy levels thus lowering the resonance peak positions as compared to
the bumped case. Fig. 3 shows the geometric potential and transmittance for wavy structures
with varying number of bumps. As the number of bumps increases, the geometric potential starts
to look like the Dirac comb. As in the Kroning-Penney problem, periodicity of the potential
opens a gap in the energy spectrum which enlarges with the increasing number of oscillations.
The effect on the transmittance is seen in Fig. 3. As expected, the energy gap sensibly reduces
the transmittance and the effect becomes sharper with the number of bumps.

5. Conclusions
da Costa potential has to be used anytime a particle is constrained onto a surface (graphene
sheets and alike) or a curve (rings). It shows that mean and Gaussian curvatures strongly
impact ballistic transport of electrons and in particular, transmittance profiles show that periodic
corrugation could lead to bandgaps opening [10]. Conversely, it could be a convenient tool to
tune outer geometric properties of SWNT in order to obtain a prescribed band structure.

However, for that purpose, several refinements should be added to the present model. Among
them, the influence of electron spin and its couplings to the chirality of nantubes is of prime
importance. Torsion is not accounted for in da Costa approach and a proper way to implement
it is to derive the effective potential starting from Dirac equation on curved spacetime.
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Figure 1: (a) Pinched nanotube. (b) Geometric potential due to the deformation shown in (a)
and (c) transmittance as function of incident energy (in meV) for different waist sizes (εR).

Figure 2: (a) Nanotube with a single bump. (b) Geometric potential due to the deformation
shown in (a) and (c) transmittance as function of incident energy (in meV) for different bump
sizes (εR).

Figure 3: (a) Wavy nanotube. (b) Geometric potential due to the deformation shown in (a) for
different numbers of bumps. (c) Transmittance as function of incident energy (in meV).
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