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Abstract. The paper discusses an experimental design of the wireless system for monitoring 

intra-abdominal pressure (IAP) using Bluetooth Low Energy technology. The possibility of 

measuring IAP via the bladder using a wireless pressure sensor with a hydrophobic bacteria 

filter between the liquid transmitting medium and the sensor element is grounded. 

1. Introduction

The intra-abdominal pressure (IAP) measurement is fundamental for the evaluation of patients with 

severe abdominal surgical pathology at risk of intra-abdominal hypertension [1]. IAP is the pressure 

concealed within the abdominal cavity as defined superiorly by the diaphragm, anteriorly and 

posteriorly by the abdominal wall, and inferiorly by the pelvic floor. The World Society of the 

Abdominal Compartment Syndrome (WSACS, www.wsacs.org) has outlined definitions and 

recommendations relating to the measurement of IAP [2]. 

Special interest deserves continuous IAP monitoring allowing to improve assessment of the effects 

of medical management. A continuous trend of 24-h IAP recordings can obtained with a 3-way Foley 

catheter or a balloon-tipped catheter placed in the stomach [3]. During continuous IAP monitoring 

respiratory variations can be more easily identified which is very important for diagnostic purposes 

[5, 6]. Multiple assembled kits for IAP monitoring are commercially available. They are attached to 

the monitor unit by wires or directly [2]. Newer techniques including wireless transducers for IAP 

monitoring are being continuously developed [7, 8, 9]. At the same time this techniques, do not allow 

to use IAP monitoring for a long term, due to low battery capacity. 

The goal of the project described in this paper was to design an experimental system for wireless 

IAP monitoring with the help of intravesical technique and to research dynamic characteristics of its 

catheter-sensor part. 

The following problems were solved: 

1) implementation of wireless transmission channel with high noise immunity and security;

2) elimination of sensor contamination;

3) registration of respiratory variations.

The design of the wireless IAP monitoring system, the theoretical model and identification results 

of its catheter-sensor part were described. The analysis of experimental data was presented. 

2. The design of the wireless pressure monitoring system

The wireless pressure monitoring system consisted of wireless pressure sensor (WPS), USB Bluetooth 

modem and a computer with installed software. In figure 1 the system's block diagram is shown. 
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Figure 1. The block diagram of the wireless pressure monitoring system. 

Wireless communication was achieved by utilizing the Bluetooth Low Energy wireless channel that 

is implemented on the basis of BLE112 module and BLED112 USB modem. 

The MPXV5010GP transducer was used as differential pressure sensor in range 0 to 10 kPa. The 

WPS was powered with a pair of AAA batteries. The pressure sensor was powered with a DC-DC 

voltage converter made on the basis of MAX1678. Suppression of high frequency components in the 

sensor output signal was provided by an analog second order low-pass filter with bandwidth of 5 Hz, 

which is implemented using OPA376. The 12 bits analog-to-digital conversion, formation of data 

packets and transmission via wireless channel with a frequency of 1 Hz were made by BLE112 

module. In addition the BLE112 module controlled the DC-DC converter by means of Uc signal in 

order to save energy. 

Electronic components of WPS were placed in a small polymer casing as shown in figure 2. 

Measurement results were displayed on the computer using a pressure monitoring software. 

Figure 2. Internal placement of the WPS components. 

3. The mathematical model of the catheter-sensor system

An air barrier with a hydrophobic anti-bacterial filter was placed between the liquid pressure 

transmission medium and sensor to eliminate contamination of the pressure sensor. This design 

required optimization of dynamic characteristics of the catheter-sensor system. 

The physical model of the system consisting of the sensor and the catheter can be represented as 

second order model with lumped parameters [10]. Figure 3 shows an electric analog of the simplified 

pressure-measuring system taking into account the air barrier. The substitutes for hydraulic inertance, 

resistance and compliance are electric inductance Lc, resistance Rc and capacitance Cc, respectively. 

The substitutes for the compliance of the sensor diaphragm and the compliance of the air barrier are 

electric capacitance Cd and capacitance Cb. It is assumed that the compliance of the sensor diaphragm 

is much larger than that of the liquid-filled catheter and the catheter material is noncompliant. The 

inertance Lb and the resistance Rb of the air barrier are neglected. 
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Figure 3. Electric analog of the simplified pressure-measuring system: 1 - partially filled fluid 

catheter, 2 - air barrier, 3 - pressure sensor membrane. 

The relation between the input voltage vi, analogous to applied pressure, and the output voltage v0, 

analogous to pressure at the sensor membrane is determined by the following second order differential 

equation 
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The liquid resistance in the catheter is due to viscous friction of its layers moving along the catheter 

at different speeds. Assuming that the motion of the liquid with viscosity η in the catheter with length 

L and radius r is laminar, it is possible, using the Poiseuille’s equation, to determine the value of 

resistance Rc as 

4πr

ηL
=R

8
c . 

The inertance Lc of the liquid with density ρ in the catheter with radius r is due to the mass of the 

liquid. It can be estimated by the following equation 

2πr

ρL
=Lc . 

The compliance Cd of the sensor diaphragm with the volume modulus of elasticity Ed is 

determined by the equation 
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The compliance Cb caused by the isothermal compression of the air barrier is calculated by 

equation 
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The values of the natural frequency ωn and damping ratio ξ can be calculated as 
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4. Experimental part

The goal of the experiment was to record transient responses of the catheter-sensor system using an 

experimental kit (figure 4) and a setup for the abdominal pressure simulation (figure 5). 
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Figure 4. A kit for wireless IAP measurement: 1 – WPS; 2 – hydrophobic anti-bacterial air filter; 3 

– syringe with 50 ml volume; 4 – three-way tap; 5 – Foley catheter.

Figure 5. Block diagram of the setup for the abdominal pressure simulation: 1 – 3 l opened 

container; 2 – 1 l sealed container; 3 – solenoid valve; 4 – water tap; 6 – the kit for wireless IAP 

measurement; 7 – digital oscilloscope; 8 – synchronization input. 

The abdominal model was implemented in the form of two containers which are connected to each 

other with a solenoid valve. A thin-walled silicone bag 200 ml volume modeling the bladder was 

placed at the bottom of the sealed container. The silicone bag was connected to the polymer adapter 

installed in its wall. The Foley catheter was placed in the silicone bag through the adapter. 

Both containers were filled with 3 l of water through a water tap located at the bottom of the sealed 

container. The Foley catheter and the silicone bag were filled with 50 ml of water using a syringe. 

After filling the system the solenoid valve was closed and only then the water tap was closed. 

The transition process was simulated by opening the solenoid valve. Transient responses were 

recorded from the output of the pressure sensor using a digital oscilloscope which is synchronized 

with the solenoid valve. The transitional characteristics, obtained in a series of experiments, were 

processed using the MATLAB System Identification Toolbox. 
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Assessment of stability of the wireless channel was made by recording cases of communication 

failures between WPS and the computer. The WPS was placed on the patient's thigh (without being 

connected to the Foley catheter). The patient was allowed arbitrary physical activity within a range of 

no more than 10 m from the computer. 

5. Results and discussion

The time constant TMD, the natural frequency fMD and the damping ratio ξMD of the catheter-sensor 

system were calculated using the mathematical model and presuming the volume of the air barrier 

equal to 630 mm
3
 (the air barrier of the kit).  

Following results were obtained: TMD = 0,0159 s; fMD = 9,99 Hz; ξMD = 0,016. 

Figure 6 shows the normalized experimental transient response of the catheter-sensor system 

and the result of the identification. 

Figure 6. Normalized transient responses: 1 - the experimental 

catheter-sensor system; 2 - the result of the identification. 

The structure and parameters of the model, produced by the result of the identification, were 

defined as 

12

1
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2
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where TID is the time constant and ξID is the damping ratio, which amounted to: 

TID = (0,0156 ± 0,0006) s; ξID = 0,183 ± 0,005. 

It was concluded that the structure of models and the values of their natural frequencies are in good 

agreement with each other. Damping ratios of models were different. It was due to the design features 

of the actual measuring system (the presence of antibacterial filter and a three-way tap). 

The maximum value of the air barrier to register respiratory variations was determined on the basis 

of the mathematical model. This value was about 100 mm
3
. 

Oscillations in the natural frequency of the catheter-sensor system can serve as an indicator of the 

artifact caused by the patient's motor activity. 

WPS demonstrated stable operation for a long term without loss of communication. 

6. Conclusion

The results of this study demonstrate the ability of the wireless continuous IAP monitoring with the 

help of the intravesical technique and the Bluetooth Low Energy technology. 

The possibility of applying a hydrophobic anti-bacterial filter, placed between the liquid pressure 

transmission medium and sensor to eliminate the contamination of the pressure sensor, was approved. 

Maximum air barrier volume of the measuring path was defined, to ensure the registration of 
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respiratory variations. Mathematical and identificational catheter-sensor models demonstrated good 

coherence. 

Wireless technology allows free movement within the laboratory setting which simplifies 

experimental research activity. The developed wireless system for IAP monitoring will be used to 

create a non-invasive method for estimating IAP variations. 
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