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Abstract. In this paper a novel family of generators producing true uniform random numbers
in ternary logic is presented. The generator consists of a number of identical ternary logic
combinational units connected into a ring. All the units are provided to have a random delay
time, and this time is supposed to be distributed in accordance with an exponential distribution.
All delays are supposed to be independent events. The theory of the generator is based on
Erlang equations. The generator can be used for test production in various systems. Features
of multidimensional random vectors, produced by the generator, are discussed.

1. Introduction

Random number generators (RNG) are important in various areas of the science and technology,
involving testing of circuits, stochastic modeling, generation of the cryptographic keys, random
initialization of variables in cryptographic protocols, and communication security [1, 2]. A
true random number generator (TRNG) is a type of RNG that generates unforeseeable data,
in contrast to pseudo-random number generator which only provides statistically strong (but
completely predictable) sequences. Recently, there were invented many types of TRNGs. Most of
them are based on event known as ”jittering” in electronic schemes. That is a kind of instability
in signals produced by an electronic device [3]. The example of such a generator employing
instability of clock generator controlling the work of a D-trigger is presented in [4]. Another
idea exploits instability of outputs of a combinational circuit with its outputs being connected
to inputs. [5]. The simplest example of a TRNG based on that invention is depicted in Figure
1. This idea was used by many authors in the binary case. Some references to original papers
can be found in [5, 6, 7]. Under some assumptions on that process, one can develop a theory of
jittering and create a circuit working as a generator of random values. Recently, it was proposed
to use generators with jitter which are constructed by using reprogrammable digital circuits or
constructions based on meta-stability [6, 8]. In both these approaches, the jitter is used for
bit sequence generation [5, 6]. Even though there exist a number of offers for hardware-based
TRNGs, the problem of discovering an efficient method for generation of true random numbers
feasible with the use of solely logic gates, remains actual.

The main weaknesses of binary elements are the interconnection and pin-out problems. On
the other hand, in the recent years, ternary circuits and their possible physical implementation
have been studied increasingly. The detailed discussion can be found in [9, 10, 11]. Moreover,
next generation nanoelectronic devices were developed (such as the resonant tunnelling devices
and quantum-dot cellular automata) [10, 11] . Such schemes are often those of multiple states
and could turn out a better device in multivalued circuits. The development of ternary logic
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devices seems to be prospective in providing a higher speed of arithmetic operations; hence the
development of such circuits becomes an actual problem. In our paper, we present a new family
of TRNGs which can be implemented by using only ternary logic gates. The main purpose of
the work is a theoretical study of the behavior of such devices.

Figure 1. Inverter in jittering mode.

The remaining part of the paper has the following organization. In Section II the basic schema
of the generator as well as its mathematical theory are given; in Section III statistical properties
of the generator are studied; Section IV is dedicated to implementation of the generator;
conclusions are given in Section V.

Throughout this paper, while dealing with matrices, the following notations are used:

(i) A[i,j] is an element of a matrix A, standing at i-th row and j-th column .

(ii) A[i,*] is the i-th row of the matrix A, A[ *,j] is the j-th column of this matrix .

(iii) θ is the zero matrix.

2. Preliminaries and basic schema

This paper proposes and analyzes a TRNG based on a balanced ternary logic system. Balanced
ternary logic is a special case of ternary logic where the digits have values -1, 0, and 1. We will
work with two-input single-output functions or gates. That means there are 32 = 9 possible
inputs, and 39 = 19383 possible gates. Consider the scheme shown in Figure 2. Here F stands for

F F F

s2 s1 s0

Figure 2. Version of the generator containing three ternary units.

a ternary combinational gate, c = F (a, b), a, b, c ∈ {−1, 0, 1}. Generally, the schema consists
of N gates. Renumber all the units via numbers in the interval [0, N −1]. The output of the unit
which uses the number k is connected to one of the inputs of the same unit and to the input of
the unit with the number k − 1 mod N (see Figure 2). After the event that at least one input
signal changes, the output signal might change too, but it takes a delay time DT. In the paper,
the following assumptions are accepted:

(i) DT is a stochastic value having an exponential distribution for all units with the same
parameter T . The latter means that P (DT < d) = 1− exp(−Td).

(ii) At any time, only one unit can change its output; all those events are independent.

In what follows, we will assume that T = 1, it does not limit the generality of the arguments.
All the restrictions, that are imposed on the system, allow us to implement Erlang theory [12],
describing functionality of the generator. Let sk(t) be the output signal of unit with number
k at time t. Denote by vector S(t) = 〈s0(t), . . . , sN−1(t)〉 the state of the TRNG at time t.
Hence the system has M = 3N states, which also are indexed by numbers from 0 to M-1. For
each n ∈ [0,M − 1] let i1, . . . , im be a list of all numbers of the states for which it is possible
to transfer the TRNG to the state Sn from states Sik

, k = 1, . . . ,m as a result of the change
of output signal of one of the units. This list of the states depends on n. Create a system
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Table 1. Functions suitable for generator building.

Name F (0, 0) F (1, 1) F (−1,−1)

F1 1 -1 0
F2 1 -1 1

of Erlang type differential equations describing dynamics of the TRNG [12]. Let Pn(t) be the
probability that the TRNG is in state number n at time t. The probability Pn(t+∆t) is the sum
of probabilities: (1−∆t)NPn(t) – no units changed its output, so the TRNG did not change its
state; and ∆t

∑

ik
Pik

- exactly one unit changed its output and the TRNG transferred to state
Sn. Here we used evident approximations: exp(−∆t) ∼ 1−∆t and 1−exp(−∆t) ∼ ∆t for small
∆t. Making ∆t to tend to 0, we get for each n ∈ [0,M − 1]

dPn

dt
= −NPn(t) +

m
∑

k=1

Pik
(t), (1)

where m, i1, . . . , im depend on n. This is an Erlang type equation, usually used in description of
Queueing Systems.

2.1. Choice of function F

Equation (1) holds for any function F mentioned above. Now, we have to impose some
restrictions on this function in order to guarantee some properties of the TRNG. First of all,
the TRNG must have no stable states. It means that inequality ∀t > 0Pn(t) < 1 holds for any
n. Suppose that the following formula takes place

c = F (a, b), ∀(a, b) c 6= a, b. (2)

From (2) it follows that any unit will change its output after a delay time, so the TRNG possesses
no stable states. Find all functions possessing the property (2). First of all, if a 6= b, then F (a, b)
is defined uniquely, and therefore F (a, b) = F (b, a). The latter means that we have to define
just F (−1,−1), F (0, 0), and F (1, 1). Let σ be an arbitrary permutation of the values −1, 0, 1.
F (a, b) and σ(F (σ(a), σ(b)) can be thought of as the same function. Two functions meeting (2)
are given in table 1.

Proposition 1

There are only two different ternary functions meeting (2).
The proof of the Proposition can be seen in appendices. Further, assume that F = F1.

2.2. Dynamics of States of Generator

As far as the type of F is defined, one can find all parameters in (1). Using matrix form, rewrite
the system as follows:

dP

dt
= Matr · P (3)

Here P = 〈P0, P1, . . . , PM−1〉
T . Since the size of Matr increases rapidly while number of units

grows in generator, we restrict ourselves to the cases N = 1, N = 2, or N = 3 in examples. First
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of all, one has to index all states of the TRNG. Let S = 〈s0, s1, . . . , sN−1〉 be a state of TRNG,
sk ∈ {−1, 0, 1}. Index of (S) is a number

Ind(S) =
N−1
∑

k=0

3k(sk + 1) (4)

For example, for N = 2, Matr is presented in (5)

Matr =































−2 0 0 0 0 0 0 0 0
1 −2 1 0 0 0 0 1 0
0 1 −2 0 0 1 0 0 1
1 0 0 −2 0 1 1 0 0
0 0 0 0 −2 0 0 0 0
0 0 1 1 1 −2 0 0 0
0 0 0 1 0 0 −2 1 1
0 1 0 0 1 0 1 −2 0
0 0 0 0 0 0 0 0 −2































(5)

Let us explain the sense of items in this matrix. Accordingly (4), the state 〈0, 1〉 has index
7. In the row number 7 (starting from zero), Matr has 1 in positions 1, 4,6. From (4) it follows
that these indexes correspond to the following states: 〈0,−1〉, 〈0, 0〉, and 〈−1, 1〉. It means that
the TRNG can transfer from those states to state 7. Indeed, suppose the TRNG is being in the
state 6. The unit 0 has on its inputs -1 from unit 0 and 1 from unit 1. In accordance with the
definition of F0, it changes its output to 0; thus it transfers to the state 7. All the other cases
can be analyzed the same way.

Formally, possessing the matrix Matr and the differential equations (3), one can find the
vector P (t) for any t. Our goal is to obtain properties of this vector without searching an exact
solution of the system.

3. Asymptotic properties of P (t)
Lines with the indexes 0, 4, and 8 in (5) have no 1’s. It means that there are no transfers of the
TRNG to the states with such indexes; in other words, these states are unattainable ones.

Proposition 2

The states of form 〈x, x, . . . , x〉 with x ∈ {−1, 0, 1} are the only unattainable states of the
generator with N > 1..

The proof of the Proposition can be seen in appendices.
In general case, exclude from consideration the states of the form 〈x, x, . . . , x〉. It means,

one should exclude three items from the vector P and three rows and three columns from the
matrix Matr in (3). We keep the previous notation for new P and Matr. Since matrix Matr
in (3) is constant, the solution of the equation can be presented in form

P (t) = exp(Matr · t) · P (0), (6)

where P (0) is a stochastic vector defining initial state of the TRRG [14]. According to the
definition,

Matr = Q−N · I, (7)

where I is the identity matrix, while Q has binary entries (1 or 0). Both the matrices have the
size M ′ ×M ′, M ′ = M − 3.
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Proposition 3

Let e1, e2, . . . , eM′ be all eigenvalues of Q and

|e1| ≥ |e2| ≥ · · · ≥ |eM′ | (8)

Then e1 = N .
The proof of the Proposition can be found in appendices.
It follows that m1 = 0 is an eigenvalue for Matr, and for all other eigenvalues m2, . . . ,mM′

of this matrix the inequality Real(mj) ≤ 0, j = 2, . . . ,M ′ holds. Suppose one has the strong
inequality

Real(mj) < 0, j = 2, . . . ,M ′. (9)

It means that the matrix E(t) = exp(t ·Matr) has a single root 1, while all other roots of this
matrix have absolute values less than 1. If t → ∞, then E(t) converges to a stable matrix. The
same holds true for the vector P (t), and

dP (t)

dt
→ 0, t → ∞

Following [12], one can find a stochastic vector P̄ = P (∞) by solving the system

Q · P̄ = N P̄ . (10)

3.1. The case N=1

There are three states of the TRNG: 〈−1〉, 〈0〉, 〈1〉 and

Matr =





−1 0 1
1 −1 0
0 1 −1





The eigenvalues of Matr are 0,−1.5,−1.5, thus (9) is fulfilled, and P̄ = 〈1/3, 1/3, 1/3〉. It means
that stable vector P̄ has the uniform distribution.

3.2. The case N=2

Here the eigenvalues of Matr are 0,−1,−4,−3,−3,−1, and the stable vector is
〈0.17, 0.17, 0.17, 0.17, 0.17, 0.17〉; hence in this case we have the uniform distribution too.

3.3. The case N=3

In this case (9) is fulfilled, but stable vector P̄ has components

〈 0.037 0.037 0.037 0.037 0.074 0.037 0.037 0.037 0.037
0.037 0.037 0.037 0.037 0.074 0.037 0.037 0.037 0.074 0.037
0.037 0.037 0.037 0.037 0.037 〉

(11)

Hence we have a nonuniform final distribution of states. What is more, there exist the special
states 〈−1, 0, 1〉, 〈1,−1, 0〉, 〈0, 1 − 1〉. In fact, it is the same state because each is a result of
cyclic transform of the other states (see Figure 2). The corresponding lines in the table contain
six 1’s, while other lines contain three 1’s.

13th European Workshop on Advanced Control and Diagnosis (ACD 2016)                                     IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 783 (2017) 012064          doi:10.1088/1742-6596/783/1/012064

5



3.4. The general case

Recall [13] that matrix Q is a decomposable one if there exists a permutation matrix Pr such
that

PrT ·Q · Pr =

(

A 0
B C

)

where A,C are square matrices. It can be proved that in general case matrix Q in (7) is an
indecomposable matrix. Because there is the restriction upon the size of the communication, we
will omit the proof of this fact. It will be presented later in a paper dedicated to this problem.
It is known ([13]) that for indecomposable matrices (9) holds. It means that the technique for
calculation of distribution of states presented above is good for any number units in the TRNG.
The only problem is to find eigenvectors of a matrix of large size. Examples show that stable
distributions of P̄ are not uniform for N > 2. Since the corresponding stable vectors are of big
size, we present the components of the vector in graphical form (see Figures 3). It means that

a)
0 10 20 30 40 50 60 70 80

0.005

0.010

0.015

0.020

0.025

0.030

b)
0 50 100 150 200 250

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

c)
0 100 200 300 400 500 600 700 800

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Figure 3. Graphical view of vector P̄ ,
where along x-axes are presented indexes
of components. a) N=4, b) N=5, c) N=6.

a kind of dependence among different outputs of the TRNG exists. On the other hand, because
of the symmetry of the scheme, the output signal of any unit has the uniform distribution.

4. Implementation of ternary generator

The standard implementation of the generator is presented in Figure 4. Clock line denotes a
series of impulses with the interval D. One must choose D as long as the time could be enough
for the TRNG to transfer to a stable state. In a real situation, one cannot get the stable
distribution in a finite time; so only an approximation of the stable distribution can be gained.
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gen

latch
clock

output

Figure 4. Implementation. Here
gen is TRNG, whose outputs are
controlled by clock.

Small instability of D does not influent on that distribution. To this end, we must evaluate the
difference between M ′ ×M ′ stable matrix Stab of form

Stab = (P̄ , P̄ , . . . , P̄ )

and matrix Astab(D) = exp(D · Matr). Let E = 〈1, 1, 1, . . . , 1〉. Accordingly the definition,
E ·Matr = Θ = 〈0, 0. . . . , 0〉; hence E ·Matrk = Θ for any natural k, and E · Astab(D) = E.
In other words, the sum of entries in any column of Stab(D) equals 1. Let

δ = max
k

|P̄ −Astab(D)[∗, k]|, (12)

where for vector q = 〈a1, . . . , an〉 |q| = maxk |ak|. Choose δ as a distance between two matrices.
Some results of calculation are presented in Table 2.

Table 2. Distance between stable matrix and Astab(D) depending on D.

N\D 2 4 8 16

1 3.1e-2 1.6e-3 3.9e-6 2.1e-7
2 4.6e-2 6.1e-3 1.1e-4 3.8e-8
3 3.6e-2 6.9e-3 2.4e-4 3.2e-7
4 2.1e-2 3.7e-3 1.4e-4 2.6e-7
5 9.8e-3 2.1e-3 9.2e-5 2.0e-7
6 6.0e-3 9.4e-4 3.6e-5 7.1e-8

As was mentioned above, a drawback of the suggested TRNG is absence of three special
signals of form 〈x, x, . . . , x〉, x ∈ {−1, 0, 1} which are not released on outputs of the schema.
One can suggest two methods to overcome that drawback. The first one is usage of a set of
independent TRNGs (Figure 5). This scheme produces uniformly distributed signals.

F F ... F
Figure 5. Generator on
base of independent units.

In Figure 5 each TRNG contains a single unit, but one can use a TRNG having arbitrary
number of units in such an implementation, although output of solely one unit will be used in
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this case. There is another solution of the problem concerning the absence of the three special
states at outputs of the TRNG. Suppose we have a scheme, presented in Figure 6. The output of
unit 0 is omitted. Because of cyclic structure of the TRNG, any of the outputs can be omitted,
but the distribution of the output signals will be the same. As a result, any ternary vector can
arise at outputs of the TRNG, and the distribution of these vectors can be found on base of the
previous calculations. For example, for N = 3, if only two outputs are used, one finds that the
probabilities are (see (11))

(i) states 〈x, x〉 0.074,

(ii) states 〈0, 1〉, 〈−1, 0〉, 〈1,−1〉 0.148,

(iii) all other states — 0.111.

So the distribution of states is a bit closer to the uniform distribution than in the original
example.

...F F F F

sN−1 sN−2 s1

Figure 6. Generator with omitted output.

5. Conclusion

The supposition that the delay times in different units are independent events is intrinsic, while
the restriction on the form of the distribution is much stronger. Because of the symmetry of the
scheme, if the delay time for all units has the same distribution, then the output of each unit will
be uniform regardless of the distribution. Nevertheless, the existence of the stable distribution
and its shape, if exists, need additional research.

Appendices

Proof of Proposition 1

Let F (a, b) meet (2) and F (0, 0) = c1, F (1, 1) = c2, F (−1,−1) = c3. There are the following
alternatives:

(i) c1, c2, c3 is a permutation of 0, 1,−1

(ii) exactly two elements in the set c1, c2, c3 equal each other.

Consider the first of cases. Let c1 = 1. Since all ci are different and c3 6= −1, we
have c3 = 0. So F = F1. If c1 = −1 then c2 = 0 and c3 = 1. Using the permutation
σ(0) = 0, σ(1) = −1, σ(−1) = 1, one converts F to F1.

Now let us turn to the second of cases. Consider various possible distributions of values for
c1, c2, c3.

(i) c1 = 1, c2 = 0, c3 = 1. Permutation σ(0) = −1, σ(1) = 1, σ(−1) = 0 converts F to F2.

(ii) c1 = 1, c2 = 0, c3 = 0. Permutation σ(0) = 1, σ(1) = −1, σ(−1) = 0 converts F to F2.

If c1 = −1, then the permutation σ(0) = 0, σ(1) = −1, σ(−1) = 1 reduces the deal to the
previous situation.
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Proof of Proposition 2

First of all, show that S = 〈x, x, . . . , x〉 is an unattainable state. Since only one output can change
during transfer, any candidate state for transfer to S must have form 〈x, x, . . . , x, y, . . . , x〉. Any
unit in the circuit has at its inputs either 6 x, x〉, or 6 x, y〉, or 6 y, x〉. In all of the above cases,
the unit can change its output to x accordingly the definition of F. On the other hand, if
S = 〈. . . , x, y, . . .〉, where x 6= y, then the state 〈. . . , x, z, . . .〉, where z 6= x and z 6= y, can
transfer to S.

Proof of Proposition 3

Accordingly the definition, the item Q[i, j] in row with the number i and the column with the
number j equals to 1 if and only if the generator can transfer from a state with number j to the
state with number i. Since the generator has N units, each of them can change its output, and
all the new states are different ones. It follows that for each j

∑

i

Q[i, j] = N (13)

It means that QT /N is a stochastic matrix, hence we have e1 = N, and the inequality (8) holds.
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