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Abstract. This paper presents a method of the determination of a minimal realisation of the
fractional continuous-time linear system. For the proposed method, a digraph-based algorithm
was constructed. In this paper, we have shown how we can perform the transfer matrix using
electrical circuits consisting of resistances, capacitance and source voltages. We have also shown
how after using the constant phase element method we can realize such a system. The proposed
method was discussed and illustrated with some theoretical and practical numerical examples.

1. Introduction

In the last two decades, integral and differential calculus of an fractional order has become a
subject of great interest in different areas of physics, biology, economics and other sciences.
Fractional calculus is a generalization of traditional integer order integration and differentiation
actions onto non-integer order. The idea of such a generalization was mentioned in 1695 by
Leibniz and L’Hospital. The first definition of the fractional derivative was introduced by
Liouville and Riemann at the end of the 19th century [1]. However, only just in the late
60’ of the 20th century, this idea drew attention of engineers. Fractional calculus was found to
be a very useful tool for modelling the behaviour of many materials and systems. Mathematical
fundamentals of fractional calculus are given in the monographs [1-6]. Some other applications
of fractional-order systems can be found in [7-12].

A lot of problems arise in one-dimensional systems, and they remain not completely solved;
for example: realisation problem, minimal realisation problem, abilities problem, etc. As stated
in the paper [13] Professor Benvenuti and Professor Farina First of all, it is not clear what kind of
mathematical “instruments” should be used to effectively tackle the minimality problem. In many
research studies in the area of the realisation problem or minimal realisation problem, we can find
a canonical form of the system, i.e. constant matrix form, which satisfies the system described by
the transfer function. Absolutely, in general we have a lot of solutions. This means that we can
find many sets of matrices which fit into the system transfer function. In [14,15] first attempts
to determine a set of solutions for finding a set of possible realisations of the characteristic
polynomial was proposed. If we add fractionality to the minimal positive realisation problem,
then the realisation problem becomes much more complicated. In bibliography [3,16-20] we can
find some methods of determination of a positive realisation in the canonical form. In [21-24]
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the first proposition of a solution of the positive fractional realisation problem based on digraph
theory was presented. The proposed method determines all possible digraph structures which
correspond to the characteristic polynomial.

The main purpose of this paper is to present a method based on digraphs theory for
computation of a minimal realisation of a given proper transfer function of all-pole continuous-
time fractional linear systems. Conditions for the existence of a minimal realisation of a given
proper transfer function will be established. For the determined realisation using constant phase
element method an electrical analogue model will be created. Finally, a comparison of analogue
models with theoretical models using a state diagram method and state-space method will be
performed. It should be noted that this work is the next step in research on the realisation of
the electrical circuits by using a digraph theory started in the publication [25] and [26].

This work has been organised as follows. Section 2 presents: some notations and basic
definitions of a digraph theory, constant phase element method and basic properties of the
fractional continuous-time system. Then, in Section 3 an algorithm for determination of
a minimal realisation of the fractional continuous-time system was presented and electrical
analogue network model using a constant phase element is given. Finally, in Section 4 theoretical
and practical models are compared and concluding remarks, open problems and bibliography
positions are given.

2. Background

2.1. Digraphs

A directed graph (or just digraph) D consists of a non-empty finite set V(D) of elements called
vertices and a finite set A(D) of ordered pairs of distinct vertices called arcs [27]. We call V(D)
the vertex set and A(D) the arc set of digraph D. We will often write D = (V, A) which means
that V and A are the vertex set and arc set of D, respectively. The order of D is the number of
vertices in D. The size of D is the number of arcs in D. For an arc (v, v2) the first vertex vy is
its tail and the second vertex vq is its head.

There are two well-known methods of representation of digraph: list and incidence matrix.
In this paper we are using incidence matrix to represent all digraphs. Method of constructing
digraphs by this method is presented for example in [27], [28] or [29]. There exists A-arc from
vertex v; to vertex v; if and only if the (¢, j)-th entry of the matrix A is non-zero. There exists
B-arc from source sy, to vertex v; if and only if the (7, m)-th entry of the matrix B is non-zero.
Let be given the positive system single input described by the following matrices

v\ v vz V3 v; \° 51
vy 0 vy
(A,B) = v 0 , v 0 (1)
v3 0 0 v3 0

we can draw one-dimensional digraph D consisting of vertices v1,vo,v3 and source s;. One-

O O O O

S1 V1 V2 v3
Figure 1: One-dimensional digraph
dimensional digraph corresponding to system (1) is presented in Figure 1.

We present below some basic notions from graph theory which are used in further
considerations. A walk in a digraph D is a finite sequence of arcs in which every two vertices
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v; and v; are adjacent or identical. A walk in which all of the arcs are distinct is called a path.
The path that goes through all vertices is called a finite path. If the initial and the terminal
vertices of the path are the same, then the path is called a cycle. More information about use
digraph theory in dynamical system is given in [30], [31].

2.2. Constant Phase Element Method

The constant phase element method relies on construction of the model consisting of resistors
and capacitors. In relation to the method described in paper [32] in method presented in [33] a
newer network model with correcting elements R, and C), (Figure 2) was constructed.

—
(=3 o o E o
[
|(':L |(‘7 |(rn— |('r-1 -
[ J @

Figure 2: Network model with correcting elements

=
h-J

The impedance of the ideal constant phase element is defined as Z(s) = Ds®. For s = jw we
have Z(jw) = D(jw)* = Dw*(cos ¢ + jsinp). The model parameters are selected according to
the following procedure:

e Set the following parameters: resistance R, conductance C7, number of lines m, argument
value ¢ and oscillates around it with amplitude Agp;

e Determine the following parameters:

® 0.24 log ab ab l1—-a b™

= — = :1 aloga b:— = _— = _—

=90 BT Txay AT =0 B =, G =Cipy
Ry = Rid*Y, Cpr=CF1 k=1,2,...,m. (2)

2.3. Fractional Order System
Let us consider the continuous-time fractional linear system described by state-space equations:

0Dfz(t) = Ax(t)+Bu(t), 0<a<l, (3)
y(t) = Cuz(t) + Du(t)
where z(t) € R™, u(t) € R™, y(t) € RP are the state, input and output vectors respectively and

A e R B e R"™™ C e RP™ and D € RPX™,
The following Caputo definition of the fractional derivative will be used:

Coo_ 4% _ 1 A0
agt - )/a ( dT? (4)

Cdtr T(n—a t —r)atl-n

where a € R is the order of a fractional derivative, f(") (1) = %@ and I'(z) = [ e "t 1dt is
the gamma function.
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Theorem 1 The Laplace transform of the derivative-integral (4) has the form
[,[C@a —OF Zsa kfk10+)

The proof of the Theorem 1 is given in [3].
After using the Laplace transform to (3), Theorem 1 and taking into account

L[D%(t)] = s*X(s)— s>z
we obtain:
X(s) = [Lis*—A]" Exm Y2o + BU( (s)],
Y(s) = CX(s)+DU(s), U(s) = L[u(t)]. (6)

After using (6) we can determine the transfer matrix of the system in the following form:
T(s) = C[L,s* — A] ' B + D € RP*™(s). (7)

Matrices A, B, C and D are called a realisation of the transfer matrix T(s) if they satisfy
the equality (7). The realisation is called minimal if the dimension of the state matrix A is
minimal among all possible realisations of T|(s).

Our task is the following: For a given transfer function (7) determine a minimal
realisation of the system (3) using one-dimensional D digraphs theory. The dimension
of the system must be the minimal among possible. For a designed realisation, build the
analogue model and compare it with the theoretical model.

3. Main results

The solution to the minimal realisation problem will be presented using special cases of the
single-input single-output (SISO) system described by the transfer function of an all-pole system
(which is the transfer function with only poles) in the following form:

by, s*™ b, s&™
T(s) = = : (8)
n=l s — g, 5ol g, os(n=2) — L qy5% — qq
— D ais™?
i=0

3.1. Theoretical Realisations
Using the transfer function (8) we have:

D = lim T(s) = [by] 9)

s$¥—00

since limga o [Is® — A] = 0. The strictly proper transfer function is given by the equation:

152D 4 by 5522 4 4 Bys® + by
Tep(s) =T(s) —D = 10
p(S) (S) S _ an_lsa(n—l) _ an_2sa(n—2) — .4 a1s® —ag < )

where gn,l- =bpa,_; fori=1,...,n.
The task of determining minimal realisations using digraphs theory, can be divided into two
parts:
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(a) Part 1: Determine state matrix A. To determine state matrix, we must multiplay the
denominator of the strictly proper transfer function by s™*™ and make the decomposition
of the characteristic polynomial

o _ =gt ggsTem (11)

d(s)=1—ap_18 % —ap—2s"
into a set of monomials. Using Proposition 1 presented in paper [34] we create all possible
digraph representations. Then using Theorem 1 presented in paper [14] and [15] we can
create all digraph realisations of the characteristic polynomials. Each digraph corresponding
to a characteristic polynomial must satisfy two conditions. The first condition relates
to the existence of the common part in the digraph (blue vertex), the second condition
relates to non-existence of additional cycles in the digraph. One of the digraph structure
corresponding to characteristic polynomial (11) presented in Figure 3 and state matrix
corresponding to digraph has the form:

w(vp,v1)s™

o

w(vp—1,v1)8~

w(vp—2,v1)s %

>4
Un—2 Un—1
w(vp—2,Un-1)s" *wW(Vn—1,Vn)s"

Un
a

« «@

w(vi,v2)s™ w(vz,v3)s™

Figure 3: One of the possible realisation of the characteristic polynomial d(s)

vi\”j V1 V2 v3 Un—2 Un—1 Un
o [w(vr,vr) w(ve,v) w(vg,v) -+ W(Vp—2,v1) W(Vp—1,v1) W(Vy,v1)]
vy | w(vy,va) 0 0 0 0
v 0 w(ve, v3) 0 0 0 0
A ) ) ) : (12)
Vn—2 0 0 0 0 0 0
Vno1 0 0 0 - w(vp—2,Vp-1) 0 0
on L0 0 0 0 w(vp—1, V) 0 ]

(b) Part 2: Determine matrices B and C. To determine matrices, we must multiply

—a(n—1)

the nominator of the transfer function (10) by s .

polynomial

TL(S) = En—l +gn—25_a + ... —i—gls_o"” +503_a(n_1)

and expand the digraph created in the first step. We have two possible structures:

Then we obtain the following

(13)

— Structure 1: We connect source vertex s corresponding to matrix B with vertex

v1,...,v, and output vertex y corresponding to matrix C with vertex v; belonging to
a set of common parts of a digraph. This digraphs structure was considered in the
paper [34].

— Structure 2: We connect source vertex s corresponding to matrix B with vertex v;
belonging to a set of common parts of a digraph, and output vertex y corresponding

to matrix C with vertex vy, ..

in the paper [34].

., v, (Figure 4). This digraphs structure was considered
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w(vi, y1) w(vz, 1) w(vs, y1) w(vn—2,91) w(vn—1,Y1) (Vn,y1)
mny
| | | | .
v O O O a) O O
: T v2 v3 Up—2 Un—1 Un,
w(s1,v1)

O
s1
Figure 4: One-dimensional digraph corresponding to polynomial n(s)

In the future consideration, we will investigate only the Structure 2. From digraph presented in
Figure 4, we can write the set of the equations which we compare with the same power of the
polynomial (13). We obtain the following equality:

;

w(s1,v1)w(v,y1) = by,
s w(sy,v1): ‘w(va, Y1) = Zn,g
sl w(sy, ) . w(vs, Y1) = gn_g
)
s =3) | sy, vy)- . oo w(vn_2,Y1) = by
57 =2) | (sy, v1)- . e cw(Vn_1,Y1) = b
57— | (sy, vy)- . o . cw(vp, ) = bo

After solving the set of the equation (14), we can write B and C matrix in the following form:

vi\s i 81 _

V1 w(sl,vl)

v 0 5

v3 0 y\ J v1 v2 v3 Un—1 Un

s i [w(vr,yn) w(ve, 1) w(vs,yr) - w(vn—1,91) w(vn,y1)] (15)
Un—1 O CeRan
o |0
Beﬁl@xl
where:
gn*1 fl;n72 Zn,g)
w{v1, Y1 = w2 Y1) = w\v3, Y1) =
(v, 91) L (v2, 1) o p— ,w(vs, y1) Y
by
,11'(1,',,,1,;1/1) — 7
w(s1,v1)

b
w(vp,y1) =

Example 1 Find a positive realisation of the all-pole rational positive continuous-time linear
system with a proper transfer function:

4521

T = .
(s) 21 +0.5514 +0.5507 + 0.7

(16)

The matrix D for a given proper transfer function (16) can be computed using equation (9). In
the considered example, we have:

D= lim T(s)=4. (17)

s —00
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After using (16) and (17), we can determine strictly proper transfer function in the form:
2t —250T 238
521 40.5504 +0.5507 + 0.7

One of the possible digraph structure corresponding to transfer function (18) is presented in
Figure 5. From the digraph, we can write the state matrix in the following form:

Typ(s) = T(s) ~ D (18)

0 0 w(vs, v1) 0 0 —-0.7
A= | w(v,ve) 0 w(vs,v2) | =11 0 —0.5 (19)
0 w(ve,v3) w(vs,vs) 0 1 —05
and we can write a set of equations in the form:
w(s1,v3) - w(vs, Y1) = -2
s7O0T |\ w(s1,v3) - w(vs, v2) - w(va, y1) + w(s1,v3) - w(vs,v1) - wlvy,y1) = —2 . (20)
s7H || w(st,vz) - w(vs, v1) - w(vr, v2) - w(ve, Y1) = 28

After solving the set of the equation (20), we can write the input and output matrix in the
following form:

0
4 -2
B= 0 ,C=10 } . (21)
w(s1,v3)  w(sy,vs)
w(s1,v3)

The desired realisation of the (16) is given by (17), (19), (21).
1

1 —0.7s70-7

V1 V2 4 U3
w(v2,y1) w(s1,v3)

O

S1
Figure 5: One of the possible realisation of the transfer function (18).

3.2. Practical Analogue Realisation

In this section, a practical realisation of the transfer using Constant Phase Element (CPE) —
which was introduced in Section 2.2 — will be presented. The obtained realisation was compared
with numerical simulations. The numerical simulations were performed with FOMCON toolbox
(35, 36].

Using CPE method, we construct a network model consisting of resistance and capacitance.
Consider two following models corresponding to K(s) = D/s"" where D € R is constant value,
and it depends on resistance and capacitance. In considered simulations, the constant D has
been determined experimentally.

e Model 1: Given Ry = 2kQ), C1 = ImF, m = 20, Ay = 0.26. For the given initial
parameters we can determine model coeflicients:

24 b
ab= 22 01905, = 10756 — 03132, b= """ = 0.6081;
1+ Ap a
(1= o™
Ry= 020 sama, o = 011 O 191850 F
. -
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Finally, the network model consists of the following elements:

— Resistors:

Ry = 2kQ; Ry = 626.5); R3 =196.2Q); Ry = 61.5€); Rs = 19.2Q); Rg = 6£2;
Ry =1.9Q; Rg =0.692; Rg =0.182; Ry = 0.0692; Ry = 0.02Q; Ryio = 5.7mf
Ryi3 = 1.8mf); Ryq = 0.55m; Ri5 = 175.1u8); Rig = 54uf); Ri7 = 17u8);

Rig = 5.4uf); Rig = 1.7uf); Rog = 0.5uf).

— Capacitors:

Cy=1mF; Cy =0.6mF; C3=0.3TmF; Cy =0.22mF; C5 = 0.14mF;
Ce = 83uF; C7 =50uF; Cyg =30uF; Cy=18.6uF; Ciop=11.4ukF;

C11 =6.9uF; Cio =42uF; Cis3 =2.6uF; Ciy = 1.6uF; Ci5 = 0.94uF
Cig = 574nF; Ci7 = 349nF; Cig = 212nF; Cig = 129nF; Cyy = 78.5nF.

1m| 0.6m|0.37m|0.22m[0.14m| 83mi| 50mi| 30mi| 18mi| 1imi

C1 Cc2 c3 Ch C5 Cc6 c7 c8 C9| cCi0

- " e
] =l 19l 12l 19 9o o o)~ o %o 3
M Nl |9 |x |dx |9)|x r |4 o H [4 x
a4 s S © - o
ol | Elen | Eln Eq- Elv |Ele |El~ |E]le |E|le |Ele
ol- |I~]= ol |42 Iol= 152 15l 1Sl I=<l2 oo
ol sl 1ol |9l I~|x @ e [T |5 D)
0 - S ~ n - o - o

c11 |c12 |ca3 |ca4 |cas |ci6 [c17 |cas |ci9 |c2o 121n

i|1.6mi |0.9mi [0.57m|0.35m[0.21m[0.13m|78n

Figure 6: The first network model

In Figure 6 the network model containing determined elements has been presented. It
should be noted that the complexity of the model is dependent on the number of lines. In
our case, we have 22 lines: 2 lines including correcting elements (resistor R, and capacitor
Cp); 20 lines including resistors and capacitors.

After this operations, we can determine the following transmittance

1.55- 107131 . 520 14,614 - 107118 . 519 12,198 - 107105518 1+ 1.935 - 10~ 35174
3.227 10782516 4 1.024 - 10~ "s1 +6.187 - 1075251 + 7.12 - 10235134
1.561 - 1074512 + 6.518 - 107375 +5.184 - 10730510 + 7.854 - 102459+

2.266 - 1071858 4 1.246 - 1071357 +1.304 - 1079955 + 2.601 - 107965+
0.0009876s* + 0.07136s + 0.97665% + 2.471s + 1
1.889 - 107138521 1-9.894 - 107125520 1 7.877 - 10712519 4 1.145 - 107995184
3.141- 10788517 +1.639 - 10777516 + 1.629 - 107751® 4 3.084 - 1028514+
1.112- 10749513 4 7.634 - 10742512 4-9.985 - 10737511 4-2.488 - 10728510+
1.181-107225% +1.067 - 1071758 +1.837 - 107 35" 4 6.026 - 10710564
3.764 - 107975 4 4.474 - 107%s* 4 0.00101s> + 0.0042645%+
0.003115s + 0.0002281

G = (22)

corresponding to the considered model.
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e Model 2: Given Ry = 10k, C; = 1mF, m = 10, Ay = 0.26. For the given initial
parameters we can determine model coeflicients:

24 b
ab — 0 =0.1905; a =108 =(.3132; b= @ 0.6081;
1+ Ap a
Ri-(1— Cy-bm
R, = M = 43.847kQ; Cp= 11 = 17.632uF.
a _

Finally, the network model consists of the following elements:

— Resistors:

Ry =2k Ry = 6.26k8); Rz = 1.96k$); R4 = 614.75Q); Rs = 192.57€);
Re = 60.32Q0; Ry = 18.898); Rg = 5.91Q0; Rg = 1.85Q2; Ryp = 0.58(1.

— Capacitors:

C1 =1mF; Co =0.61mF; C3 =0.3TmE; Cy =0.22mF; Cs = 0.14mF;
Ce = 83.13uF; Cr = 50.55uF; Cg = 30.7T4uF; Cyg = 18.69uF; Cio = 11.36uF.

- - " ) ™~ 0 ~ o - o o]o
= — |Ll~ |elm = v "o |2~ |o|e |oloe |
x|n Sl Yz |2 I1Z 15012 |sl2 sl b i 14 O—&'
|+ ] - 0 — o - Al

ci| c2| c3| cal cs| ce| c7| c8l 9| ciol 12in

1m| 0.6m|0.37m|0.22m|0.14m| 83mi| 50mi| 30mi| 18mi| 1imi Cp

Figure 7: The second network model

In Figure 7 the network model containing determined elements has been presented. In this
case, we have 12 lines: 2 lines including correcting elements (resistor R, and capacitor Cp);
10 lines including resistors and capacitors.

After this operations, we can determine the following transmittance

4.01-10729510 4 7.504 - 1071557 +2.247 - 1071058 - 1.244 - 107657+
0.0013045°% + 0.265° + 9.8765% 4 71.3653 + 97.6652 + 24.71s + 1
7.07 10721 +2.328 . 107519 +1.165 - 1075 + 1.064 - 10710554
1.836 - 107 75" 4+ 6.025 - 10~°s% + 0.003763s° + 0.04474s* + 0.101s3+
0.042645s + 0.003115s + 2.281 - 107>

Gy = (23)

corresponding to considered model.

4. Comparison and Discussion
To compare the theoretical model with determined CPE network models in Simulink, test
environment (Figure 8) has been built. It consists of three areas: the first represents a model as
a state diagram system (Figure 9(a)); the second represents model as a state-space system and
the third represents CPE network model (Figure 9(b)).

Let us consider the following two cases:
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u Y1

Y1

State diagram

b =

Constant CPE Diagram System mede

DPs=AoetBu
\=Cx+Du v3

Fractional
State-Space

Theoretical theoretical

ol o
sl R

Figure 8: Test environment

2

a0 ;-/\
Fracionsl| 47 = =0
integrator 3| 15 ° lcpea

_ B () O )
i1 1 —* i
! Geind LM Setems )
a1
Fractonal| g7 E]
integrstor 2| 1% E CPEZ
f h.
—pb—i +*> %@—b )
a2 7; a2
Fractonsl| g7 _:|f":'E1
inegrator | 1* =

Figure 9: Models: (a) state diagram (b) CPE model.

e Case 1: Figure 10(a) presents a step response of the state-space model (yellow line), state
diagram model (red line) and the first network model (green line). As we can see the fit
of the model is not the best. We can notice quite clear difference between the theoretical
and physical model. Particularly, it is clearly visible in the graph of mean square error
presented in Figure 11 (blue line).

e Case 2: Figure 10(b) presents step response of the state-space model (yellow line), state
diagram model (red line) and the second network model (green line). As we can see the fit
of the model is very good. There are no significant differences between the theoretical and
physical model. Particularly, it is clearly visible in the graph of mean square error presented
in Figure 11 (red line).

From the above observation, we can write a very important conclusion. Before we start
physically building an analogue model, we should carry out a series of simulations using Simulink,
for example. In the paper [33] it has been proposed that for a higher value of the parameter m
the model is more accurate. It appears, that the quality of the model and the adjustment to the
theoretical model are influenced by many parameters. For example in Model 1 we used 20 lines
and the fit is worse than in the case of Model 2 in which we used only 10 lines. Additionally, the
quality of the model is affected by the way of selection of initial parameters: Ri, C1, and Ay.

10
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4 T T T (—
——CPE Model 1

State-Space Model
——State Diagram Model | |

value
T
value

0 1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15 16 17 18 19 20 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20
time [s] fime [5)

(a) (b)

Figure 10: Step response of the state-space model, state diagram model and (a) the first CPE
model (b) the second CPE model.

3
10
8

—— MSE Model 1
——— MSE Model 2

7k 4

Mean Squared Error

I ! ! ! ! I ! I ! ! ! ! ! ! I ! I ! !
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5. Concluding Remarks
The paper presents a method, based on the one-dimensional digraph theory, for finding the
realisations of a given proper transfer function of all-pole continuous-time fractional linear
systems. For the obtained realisation, we have constructed two models based on constant phase
element method. The first model consists from 20 lines and the second model 10 lines. Each line
consists of properly selected resistors and capacitors. Prepared theoretical models (state-space
model and space diagram model) and practical model were compared in terms of the quality of
the model and its fit.

Further work includes extension of the digraph based algorithm to find a broader class
of electrical circuits corresponding to the transfer function and practical construction of the
analogue models for different values of «.
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