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Abstract. Quantifying and controlling depth of anesthesia is a challenging process due to
lack of measurement technology for direct effects of drug supply into the body. Efforts are
being made to develop new sensor techniques and new horizons are explored for modeling this
intricate process. This paper introduces emerging tools available on the ’engineering market’
imported from the area of fractional calculus. A novel interpretation of the classical drug-effect
curve is given, enabling linear control. This enables broadening the horizon of signal processing
and control techniques and suggests future research lines.

1. Introduction
The emerging concepts of fractional calculus (FC) in biology and medicine have shown a great
deal of success, explaining complex phenomena with a startling simplicity ([1, 2, 3]). It is clear
that a major contribution of the concept of FC has been and remains still in the field of biology
and medicine ([4]). Fractional calculus generously allows integrals and derivatives to have any
order, hence the generalization of the term fractional-order to that of general-order. Of all
applications in biology, diffusion is the one most appealing from modeling point of view, since
it allows characterizing a relatively complex process with parsimonious models.

Modeling drug dynamics in the body using compartmental models is perhaps one of the most
popular modeling approach ([5]). These models are based on mathematical characterization of
molecular biochemistry and transport phenomena in the body ([6]). As such, diffusion plays an
important role in drug assimilation, transport and clearance, and it is a physiological process
which can be well described by means of fractional calculus ([7]).

In this paper, a fresh view upon the models for drug release and their effect will be given
in the application of depth of anesthesia regulation. If one would like to have optimal drug
infusion rates into a patient with avoiding over- and under-dosing, then accurate patient models
are necessary (although not sufficient, since a good control methodology is also required) ([8]).
Accurate models may hold a realistic dynamic perspective for average populations datasets, but
they are by far sub-optimal when patient-individualized control is envisaged. This is due to
the fact that inter-patient variability has a strong impact on the perception and effectiveness of
the drug into the body of the patient (i.e. drug effect, patient sensitivity to the drug, etc). A
schematic representation of the anesthesia paradigm in terms of its components is given in figure
1. The hypnosis and neuromuscular blockade are well-characterized, yet the analgesia component
remains challenging for control purposes because no direct output measure is available. Hence, no
specific models are yet available for analgesia effect in the human body during general anesthesia
(i.e. unconsciousness). The pharmacokinetic (PK) models available in the literature are linear in
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Figure 1. A personal view of the anesthesia paradigm. The items in red are the current
challenges.

terms of model parameters and dynamics ([9, 10]). Their frequency response is quasi-identical,
less for a scaling factor in the gain (i.e. this accounts in part for the sensitivity to the drug
with respect to the body mass index of the patient). The pharmacodynamic (PD) models, are
usually represented by nonlinear Sigmoid (Hill) curves and represent the relationship of the drug
concentration to the drug effect in each patient. From patient-individualized control point of
view, PD models are the most challenging part of the patient model and pose most challenges
for control (i.e. highly nonlinear characteristic).

Fractional calculus offers tools to model such nonlinear characteristics as those of the PD
models with less degree of nonlinearity in model parameters ([3]). The original purpose of this
paper is to show a methodology which enables a different, fresh view to these models and how
they can be integrated in the control paradigm of depth of anesthesia regulation.

The paper is structured as follows: next, a brief introduction on the fractional calculus tools
for modeling drug release and its effect is given. Section III depicts the classical methodology for
PK-PD models in anesthesia and section IV presents the proposed PD modeling approach and
some simulation results. Current limitations for the use of these models in a closed loop control
paradigm are given and a conclusion section summarizes the main outcome of this paper.

2. Tools from fractional calculus
Pure empirical models such as input - output models are rather descriptive with loss of
physiological insight into the drug absorption, transport, diffusion and release. However, from
control point of view they are the most simple to obtain and to deliver information to the
controller for deciding the optimal drug infusion rate necessary for the specific patient whose
model is available. On the other hand, physiologically and bio-chemically based models are
difficult to attain due to the extraordinary complexity of this process. An intermediate solution
is perhaps the use of semi-empirical models. Such a model which is fairly simple to employ in
characterizing drug release is the power-law model:

Mt

M∞
= ktn (1)
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where Mt and M∞ are cumulative amounts of drug released at time t and infinite time,
respectively; and k is a constant reflecting the structural and geometrical characteristics of the
system, and n is the so-called ”release exponent” ([11]). For purely diffusion-controlled release,
n = 0.5. other values of n may be indicative of various diffusion conditions. These features of
this model are of special interest in our study since we would like to look at the inter-patient
variability from this standpoint.

Following the fundamental law of physics which applies to well stirred, homogeneous systems,
it follows that the mean square displacement of the walker, < x2 > in the random walk model
is proportional to time ([12, 13]):

< x2 >∝ t (2)

However, in disordered systems, such as most biological environments, this is no longer
proportional with time, but with the fractal walk dimension of the walker:

< x2 >∝ tDw (3)

with Dw 6= 2. This property implies that scaling laws such as power laws are associated with
kinetics of various processes taking place in the (biological) environment (i.e. tissue). Most
biological tissues can be approximated in their properties by polymers. As such, the spatio-
temporal porosity of a dynamically changing polymer is close to the percolation threshold for
non-classical diffusion effects impinging on release kinetics. Fractional calculus has shown in
several (non)biological applications that classical diffusion as well as non-classical diffusion can
be characterized by fractional order differ-integrals models ([4]). It is therefore simple to derive
further the model from (1) in its Laplace equivalent. Consider that the amount of drug released
varies in time and that the amount released at infinite time is a constant. This results in the
following Laplace domain model equivalent:

Mt(t)

M∞
= k

Γ(1− n)

s1−n
(4)

where Γ is the Gamma function and s the Laplace operator. If a step input is applied to this
model, i.e. apply a constant drug infusion rate, one obtains:

Mt(t)

M∞
= ksnΓ(1− n) (5)

which is then a fractional order model (more information about such models is given in
Appendix ). This result has regained the attention of the research community and current
efforts are being directed towards providing pharmacokinetic models with fractional order differ-
integrals ([14, 15]).

3. Classical PK-PD models
In order to control the depth of sedation based on predictive control strategies, a model which
captures the dynamics of the patient is required. The selection of the model input and output
variables is crucial for optimal control. Propofol is a commonly used hypnotic drug to induce
general anesthesia ([8]). Using the electroencephalogram (EEG), several derived, computerized
parameters like the BIS have been tested and validated as a promising measure of the hypnotic
component of anesthesia. BIS values lie in the range of 0-100; whereas 90-100 range represents
fully awake patients; 60-70 range and 40-60 range indicate light and moderate hypnotic state,
respectively ([16]).

PK-PD blocks denote compartmental models. The PK-PD models most commonly used for
propofol and remifentanil are the 4th order compartmental model described by Schnider ([9, 10])
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Figure 2. General compartmental model of the patient, where PK denotes the pharmacokinetic
model and PD denotes the pharmacodynamic model of an infused drug.

and they have the structure depicted in Fig. 2. In this figure x1 [mg] denotes the amount of drug
in the central compartment. The blood concentration is expressed by x1/V1. The peripheral
compartments 2 and 3 model the drug exchange of the blood with well and poorly diffused body
tissues. The masses of drug in fast and slow equilibrating peripheral compartments are denoted
by x2 and x3, respectively. The parameters kji, for i 6= j, denote the drug transfer frequency
from the jth to the ith compartment and u(t) [mg/s] is the infusion rate of the anesthetic drug
into the central compartment. An additional hypothetical effect compartment was proposed to
represent the lag between drug plasma concentration and drug response. The concentration of
drug in this compartment is represented by xe. The parameters kij of the PK models depend
on age, weight, height and gender and the relations can be found in [9, 10].

The PK-PD model is represented by the following equations:

ẋ1(t) = −(k10 + k12 + k13) · x1(t) + k21 · x2(t) + +k31 · x3(t) + u(t)/V1
ẋ2(t) = k12 · x1(t)− k21 · x2(t)
ẋ3(t) = k13 · x1(t)− k31 · x3(t)
ẋe(t) = −ke0 · xe(t) + k1e · x1(t)

(6)

The effect compartment receives drug from the central compartment by a first-order process and
it is regarded as a volumeless additional compartment. Therefore, the drug transfer frequency
from the central compartment to the effect-site compartment is equal to the frequency of drug
removal from the effect-site compartment: ke0 = k1e = 0.456 [min−1]. The corresponding
concentration in the effect site compartment is denoted by Ce. The parameters kij of the PK
models depend on age, weight, height and gender and can be calculated for Propofol:

V1 = 4.27[l];V2 = 18.9− 0.391(age− 53)[l];V3 = 2.38[l];
Cl1 = 1.89 + 0.0456(weight− 77)− 0.0681(lbm− 59) + 0.0264(age− 53)[l/min]
Cl2 = 1.29− 0.024(age− 53)[l/min];Cl3 = 0.836[l/min];

k10 = Cl1
V1

[min−1]; k12 = Cl2
V1

[min−1]; k13 = Cl3
V1

[min−1];

k21 = Cl2
V2

[min−1]; k31 = Cl3
V3

[min−1];

(7)

where Cl1 is the rate at which the drug is cleared from the body, and Cl2 and Cl3 are
the rates at which the drug is removed from the central compartment to the other two
compartments by distribution. The lean body mass (lbm) for women and men are: lbmmen =
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1.1 ·weight−128 · weight
2

height2
and lbmwomen = 1.07 ·weight−148 · weight

2

height2
, respectively. The relation

between the effect site concentration Ce and the BIS is given by a nonlinear sigmoid Hill curve:

BIS(t) = E0 − Emax ·
Cγe (t)

Cγe (t) + C50γ
(8)

where E0 is the BIS value when the patient is awake; Emax is the maximum effect that can be
achieved by the infusion of Propofol; C50 is the Propofol concentration at half of the maximum
effect and γ is a parameter which together with the C50 determines the patient sensitivity to
the drug. E0 and Emax are usually considered equal to 100.

As explained earlier, the main challenge for control standpoint is the nonlinearity of the Hill
curve given by (8) and the inherent inter-patient variability. To illustrate this to the reader, a
realistic set of typical and atypical patients has been used, with the parameter values given in
Table 1. The resulted Hill curves by simulating the PKPD model of these patients is shown in
figure 3.

Figure 3. Example of Hill curves from various patients.

4. Proposed Modeling Approach and Analysis
Recall that the equation (1) is the basis for the fractional order model from (5). As explained,
the red-line connecting these models is based on the theory of fractional calculus and fractal walk
dynamics. An interesting feature of systems characterized by fractal dynamics is the following:
represented on a log-log plot, their characteristic becomes linear. This feature is of special
interest for us, especially if the reader may recall the Hil curve from figure 3. Of course, it would
be very nice if the strong nonlinearity and inter-patient variability depicted in this figure would
be diminished, or even better, simply vanish into thin air. In this section, some ideas will be put
forward which will lead the reader through this new approach of viewing Hill curves for drug
effect to concentration relationship.

Based on (1) one can write the same relationship for the Hill curve:

BIS(t)

Ce(t)
= k · tn (9)
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1 40 163 54 F 6.33 98.80 94.10 2.24
2 36 163 50 F 6.76 98.60 86.00 4.29
3 28 164 52 F 8.44 91.20 80.70 4.1
4 50 163 83 F 6.44 95.90 102.00 2.18
5 28 164 60 M 4.93 94.70 85.30 2.46
6 43 163 59 F 12.10 90.20 147.00 2.42
7 37 187 75 M 8.02 92.00 104.00 2.10
8 38 174 80 F 6.56 95.50 76.40 4.12
9 41 170 70 F 6.15 89.20 63.80 6.89
10 37 167 58 F 13.70 83.10 151.00 1.65
11 42 179 78 M 4.82 91.80 77.90 1.85
12 34 172 58 F 4.95 96.20 90.80 1.84

Table 1. Characteristic variables for each of the virtual realistic 12 patients used in this study.

where k and n are varying on the patient PK-PD characteristics. If one compares (8) with (9)
it can be recognized the resemblance in the power term and observe in fact a simplification of
the model from (8) in terms of parameter number. From a structural point of view, there is no

difference between the models, since both are semi-empirical models. The term BIS(t)
Ce(t) denotes

the effect-to-concentration ratio (ECR) and its units are [%/mg/ml]. Based on the principles
of fractal walk, if the scale of the ECR representation is changed from linear to logarithmic, it
becomes a (quasi)linear relation.

To verify whether the ECR becomes (quasi)linear, one may calculate the drug effect BIS(t)
as a function of the drug concentration Ce(t). The profile of Ce(t) may differ depending on the
type of depth of anesthesia regulation that can occur in practice. Usually, in target-controlled
infusion systems, drug is infused in the patient in open loop (i.e. no feedback from the patient
is explicitly taken into account !) and is the most widely applied in clinical practice. Averaged
population models are used to predict the concentration in the blood and thus in the effect site
compartment from (6) and their corresponding BIS effect. If we would represent this in time, it
appears as a train of steps of different values; i.e. the anesthesiologist changes the value of the
targetted concentration depending on the reactions in biological signals from patient (e.g. heart
rate, respiratory rate, blood pressure, cardiac output, oxigen concentration, etc).

There are three profiles investigated in this paper: i) a linearly increasing concentration, ii) a
first order lag and iii) a second order lag, as in figure 4. of course, in practice, the time constant
of the concentration profiles is much larger than the one taken in this example. However, this
does not affect the overall conclusions. Figure 5 plots the evolution of ECR with these three
variation characteristics of Ce, for an averaged population of data from table 1.

Notice that in figure 5 both X and Y scales are logarithmic. Observe that the ECR is indeed
quasi-linear and that the difference in slope is attributed to the variations in the dynamic profiles
of Ce. if one repeats this simulation using all the values from the table 1, one obtains the result
given in figure 6. An interesting result is that of moving the effects of inter-patient variability
at later times. This allows to postpone the robustness check of the controller with respect to
variations in the model. This allows performing online identification for attaining a specific
model of the respective patient during general anesthesia, thus updating the model parameters
in-between the control samples. A possible method for this patient-individualized control of
anesthesia is given in [17].
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Figure 4. Example of Ce curves for an averaged patient model parameter values based on table
1.

Figure 5. Example of ECR curves for an averaged patient model parameter values based on
table 1.
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Figure 6. Example of ECR curves for all patient model parameter values from table 1.

To show the efficiency of fractional order operators simulation results for a PKPD model
presented in section 3 are depicted in figure 7 depicts the time evolution of the Propofol amount
for different values of n: n = 0.6; 0.8; 1.0.

Figure 7. Propofol amount as a function of time for compartment 1, compartment 2 and effect
site compartment.
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The model coefficients have been calculated for a male person of 74 years old, 88 kg, 164 cm
and a bolus injection of 50 mg injected at a rate of 3.3. mg/s during 15 seconds. It can be
observed that for n = 1 the patient is more sensitive to the drug than for n = 0.6. A higher
amount of drug is diffused in the muscle and effect compartment, resulting in lower values of the
BIS signal. This is in part due to the fact that a value for n = 1 will imply a normal diffusion
process, whereas for n < 1 a sub-diffusion occurs, the drug being faster cleared out of the body
(less uptake). For n = 0.6 less drug uptake occurs, the effect is limited and values do not reach
sedation, i.e. effect remains above 50%.
Our results suggest that the proposed fractional order compartmental model captures well inter-
patient variability since different values of n can lead to slower or faster uptake and various
effects.

5. Current Limitations
If the same constant drug infusion rate would be given to all patients from table 1, then the
result depicted in figure 8 will be obtained in terms of BIS(t) output variation with time. It is

Figure 8. Example of BIS curves resulted from a constant drug infusion rate for all patient
model parameter values from table 1.

therefore obvious that i) closed loop control is necessary and ii) an averaged patient model will
deliver sub-optimal results since they require a robust, conservative controller able to deal with
the inter-patient variability. Moreover, it is also clear that the inter-patient variability may vary
quite significantly and that one single controller (without online adaptation) will never suffice
in practice. A first problem is to find online adaptation algorithms which may adapt the model
parameters k and n to the patient characteristics. Identification from logarithmically sampled
data has been proposed in ([18]) and represents a good framework for developing the online
identification algorithm.

The next problem is to find a solution to integrate the model from (9) into a closed loop
control system taking into account the requirement for a logarithmic sample time (i.e. in
order to maintain linearity). Although it may look surprisingly, it has already been shown
in various examples that a Riemann sampling rate (i.e. linear periodic) may be outperformed
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by a Lebesque sampling rate (i.e. event-triggered) in several applications ([19]). Since the
Lebesque sampling rate is an event triggered rate used successfully in practice in closed loop
control (e.g. networked control, sensor networks), it may be revealing to look into the possibility
of a logarithmic sampling rate.

6. Conclusion
This paper presented the available tools emerging from fractional calculus to model the nonlinear
characteristics of the pharmacokinetic and pharmacodynamic patient models. Advantages and
challenges have been discussed. Results suggest that the high degree of inter-patient variability
and nonlinearity may be avoided, leading to linear control techniques instead of advanced,
complex control techniques.

Further steps of this research line are dealing with the current limitations: i) online
identification of logarithmically sampled data and ii) control of logarithmically sampled systems.

7. Appendix
The fractional calculus is a generalization of integration and derivation to non-integer (fractional)
order operators ([20, 21]). First, we generalize the differential and integral operators into one
fundamental operator Dn

t (n the order of the operation) which is known as fractional calculus.
Several definitions of this operator have been proposed, mainly based on generalization of

Figure 9. Sketch representation of the FO integral and derivator operators in frequency domain,
by means of the Bode plots (magnitude above and phase bellow).

the standard differential–integral operator in two main groups: (a) they become the standard
differential-integral operator of any order when n is an integer; (b) the Laplace transform of the
operator Dn

t is sn (provided zero initial conditions), and hence the frequency characteristic of
this operator is (jω)n. The latter is very appealing for the design of parametric modeling and
control algorithms by using specifications in the frequency domain. A fundamental Dn

t operator,
a generalization of integral and differential operators (differ-integration operator), is introduced
as follows:

A fundamental Dn
t operator, a generalization of integral and differential operators

(differintegration operator), is introduced as follows:

Dn
t =


dn

dtn , n > 0
1, n = 0∫ t

0(dA)−n, n < 0

 (10)

where n is the fractional order and dA is a derivative function. The Laplace transform for
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integral and derivative order n are, respectively:

L
{
D−nt f(t)

}
= s−nF (s) (11)

L {Dn
t f(t)} = snF (s) (12)

where F (s) = L{f(t)} and s is the Laplace complex variable. The Fourier transform can be
obtained by replacing s by jω in the Laplace transform and the equivalent frequency-domain
expressions of sn are:

1

(jω)n
=

1

ωn

(
cos

nπ

2
− j sin

nπ

2

)
(13)

(jω)n = ωn
(

cos
nπ

2
+ j sin

nπ

2

)
(14)

A comprehensive tutorial in fractional calculus is given in ([20, 21]).
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