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Abstract. This paper investigates the problem of structural model matching by output feedback in linear
impulsive systems with control feedthrough. Namely, given a linear impulsive plant, possibly featuring an
algebraic link from the control input to the output, and given a linear impulsive model, the problem consists
in finding a linear impulsive regulator that achieves exact matching between the respective forced responses
of the linear impulsive plant and of the linear impulsive model, for all the admissible input functions and all
the admissible sequences of jump times, by means of a dynamic feedback of the plant output. The problem
solvability is characterized by a necessary and sufficient condition. The regulator synthesis is outlined
through the proof of sufficiency, which is constructive.

1. Introduction
Linear impulsive systems form a special class of hybrid dynamical systems, featuring a continuous-time
linear behavior (governed by the so-called flow dynamics) subject to state discontinuities occurring at
isolated point of the time axis (governed by the so-called jump dynamics). Linear impulsive systems have
recently attracted a huge amount of research interest, mainly because they are particularly effective in
modeling complex phenomena as well as composite systems — see, e.g., [1]. Nowadays, several control
and observation problems have been formulated and investigated in the context of linear impulsive
systems: i.e., state estimation [2], linear quadratic control [3,4], disturbance decoupling [5,6], and output
regulation [7–13].

As to model matching, this is a classical problem of control theory, which still attracts noticeable
attention not only for its intrinsic theoretical interest, but also because it provides powerful tools to
solve more general problems — see, e.g., [14–16]. In this context, the contribution of this work lies in
considering — for the first time (to the best of the author knowledge) — the problem of model matching
for linear impulsive systems with a possible feedthrough term from the control input to the output and in
proving a necessary and sufficient condition for its structural solution. In particular, the linear impulsive
systems dealt with are allowed to have jump time instants not a-priori known and (possibly) not uniformly
spaced in time. However, it is assumed that the number of jump times in any finite time interval is finite,
so as to avoid Zeno behaviors.

As to the underlying methodology, this ensues from the geometric approach to linear control theory
[17, 18]. This approach has been extended to cope with linear impulsive systems, e.g., in [5, 6, 13].
However, the presence of possible feedthrough terms requires further generalizations of the notion of
hybrid controlled invariance, which were not given in the previous papers. Actually, the geometric
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approach has proven to be quite powerful in handling also control problems stated for other classes of
hybrid systems, like, in particular, switching linear systems — see, e.g., [19–36].

Notation: The symbols R, R+, and Z
+ stand for the sets of real numbers, nonnegative real numbers,

and nonnegative integer numbers, respectively. Matrices and linear maps are denoted by slanted upper-
case letters, like A. The image and the kernel of A are denoted by ImA and KerA, respectively. The
transpose of A is denoted by A�. The inverse of a nonsingular square matrix A is denoted by A−1. Vector
spaces and subspaces are denoted by calligraphic letters, like V . The symbol I denotes an identity matrix
of appropriate dimensions.

2. Output feedback model matching in linear impulsive systems — problem statement
The definition of a linear impulsive system requires that the time domain be described by an interlaced
sequence of continuous time intervals and isolated time instants. In particular, in this work, the time
domain is specified as follows. The set T = {t0, t1, . . .} represents a finite or countably infinite ordered
set of strictly increasing elements of R

+. The symbol tf denotes the last element of T when the
cardinality of T is finite. The set T is assumed to have no accumulation points: i.e., the number of
elements of T is finite in any finite interval of R+. The symbol T denotes the set of all T satisfying this
constraint. The nonnegative real axis without the elements of T is denoted by R

+ \ T .
The linear impulsive system ΣS is defined by

ΣS ≡

⎧⎨
⎩

ẋS(t) = AS xS(t) +BS u(t), t∈R
+ \ T ,

xS(tk) = JS x−S (tk), tk ∈T ,
yS(t) = CS xS(t) +DS u(t), t∈R

+,

where xS ∈XS =R
nS is the state, u∈R

p is the control input, and yS ∈R
q is the output, with p, q≤nS .

AS , BS , JS , CS , and DS are constant real matrices of suitable dimensions. The direct algebraic link
from the control input to the output established by the matrix DS is called control feedthrough. The
matrices [

BS

DS

]
,

[
CS DS

]

are assumed to have full rank. The set of the admissible control input functions u(t), with t∈R
+,

is assumed to be the set of all piecewise-continuous functions with values in R
p. The so-called

flow dynamics is governed by the differential state equation. Instead, the algebraic state equation
rules the so-called jump dynamics. Thus, according to the linear impulsive structure of Σ, the state
evolution xS(t) in the time interval [0, t0) satisfies the differential equation, with given initial state
xS(0)=xS,0 and input function u(t), with t∈ [0, t0). The state xS(tk), with tk ∈T , is the image
through JS of x−S (tk)= limτ→0+ xS(tk − τ). The state evolution xS(t) in the time interval [tk, tk+1),
with tk, tk+1 ∈T , satisfies the differential equation, given the initial state xS(tk) and the input function
u(t), with t∈ [tk, tk+1).

The linear impulsive model ΣM is defined by

ΣM ≡

⎧⎨
⎩

ẋM (t) = AM xM (t) +BM d(t), t∈R
+ \ T ,

xM (tk) = JM x−M (tk), tk ∈T ,
yM (t) = CM xM (t), t∈R

+,

where xM ∈R
nM is the state, d∈R

q is the input, and yM ∈R
q is the output. The set of the admissible

input functions d(t), with t∈R
+, is assumed to be the set of all piecewise-continuous functions with

values in R
q.

Hence, the problem of model matching by output feedback in linear impulsive systems can be stated
as follows.
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Figure 1. Block diagram for model matching by output feedback

Problem 1 (Model matching by output feedback in linear impulsive systems) Let the linear im-
pulsive system ΣS and the linear impulsive model ΣM be given. Find a linear impulsive regulator ΣR,
defined by

ΣR ≡

⎧⎨
⎩

ẋR(t) = AR xR(t) +BR h(t), t∈R
+ \ T ,

xR(tk) = JR x−R(tk), tk ∈T ,
u(t) = CR xR(t), t∈R

+,

where h(t)= d(t)− yS(t), such that the closed-loop linear impulsive system ΣL, defined by

ΣL≡

⎧⎨
⎩

ẋL(t) = AL xL(t) +DL d(t), t∈R
+ \ T ,

xL(tk) = JL x−L (tk), tk ∈T ,
yS(t) = CL xL(t), t∈R

+,

where

AL =

[
AS BS CR

−BR CS AR −BR DS CR

]
, DL =

[
0
BR

]
,

JL =

[
JS 0
0 JR

]
,

CL =
[
CS DS CR

]
,

satisfies the requirement that the output yS(t) is equal to the model output yM (t), for all t∈R
+, when

the respective initial states are zero, for all the admissible input functions d(t), with t∈R
+, and all the

admissible sequences of jump times T ∈T .

The block diagram in Fig. 1 illustrates the system interconnection considered in Problem 1.

3. Feedforward disturbance decoupling for the extended linear impulsive system — problem
statement
As will be shown in the remainder of this work, the solution to the problem stated in Section 2 can be
obtained through the solution of the problem tackled in this section. Namely, this section is focused
on a problem of feedforward disturbance decoupling formulated for a new linear impulsive system —
henceforth referred to as the extended linear impulsive system — which consists of the output-difference
connection between the given linear impulsive plant ΣS and a new linear impulsive model — from now
on denoted by Σ̃M — obtained by suitably modifying the original linear impulsive model ΣM .

The modified linear impulsive model Σ̃M is obtained from the original model ΣM by closing a unit
positive output feedback on the flow dynamics of ΣM , so that

Σ̃M ≡

⎧⎨
⎩

ẋM (t) = (AM +BM CM )xM (t) +BM h(t), t∈R
+ \ T ,

xM (tk) = JM x−M (tk), tk ∈T ,
yM (t) = CM xM (t), t∈R

+.
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The set of the admissible input functions to the modified model Σ̃M is defined as the set of all piecewise-
continuous functions h(t), with t∈R

+, taking their values in R
q.

Hence, the extended linear impulsive system — briefly denoted by Σ — is defined as the connection
of the given linear impulsive system ΣS with the modified linear impulsive model Σ̃M , such that the
control input, the disturbance input, and the output of Σ respectively are the control input of ΣS , the
input of Σ̃M , and the difference between the outputs of ΣS and Σ̃M . Therefore,

Σ≡

⎧⎨
⎩

ẋ(t) = Ax(t) +B u(t) +H h(t), t∈R
+ \ T ,

x(tk) = J x−(tk), tk ∈T ,
y(t) = C x(t) +Du(t), t∈R

+,

where

A =

[
AS 0
0 AM +BM CM

]
, B =

[
BS

0

]
, H =

[
0

BM

]
, (1)

J =

[
JS 0
0 JM

]
, (2)

C =
[
CS −CM

]
, D = DS . (3)

The state space of Σ will be denoted by X : i.e., X =R
n, where n=nS +nM .

Consequently, the disturbance decoupling problem, by a feedforward action, for the extended linear
impulsive system Σ can be cast as follows.

Problem 2 (Feedforward disturbance decoupling for the extended linear impulsive system) Let
the extended linear impulsive system Σ be given. Find a linear impulsive regulator ΣR such that the
compensated linear impulsive system

Σ̃≡

⎧⎨
⎩

˙̃x(t) = Ã x̃(t) + H̃ h(t), t∈R
+ \ T ,

x̃(tk) = J̃ x̃−(tk), tk ∈T ,

y(t) = C̃ x̃(t), t∈R
+,

where

Ã =

[
A BCR

0 AR

]
, H̃ =

[
H
BR

]
,

J̃ =

[
J 0
0 JR

]
,

C̃ =
[
C DCR

]
,

satisfies the requirement that the output y(t) is zero, for all t∈R
+, when the initial state is zero, for all

the admissible input functions h(t), with t∈R
+, and all the admissible sequences of jump times T ∈T .

The block diagram in Fig. 2 shows the system interconnection taken into consideration in Problem 2.

4. Geometric approach to linear impulsive systems with control feedthrough
As is shown by the broad literature available on disturbance decoupling, probably the most powerful
tools to deal with this kind of control problems are those provided by the geometric approach [17, 18].
Over the time, the basic notions originally set forth to handle linear time-invariant systems have been
generalized and adapted to deal with more general classes of dynamical systems. In particular, as
far as linear impulsive systems are concerned, some fundamental notions, like those of invariance and
controlled invariance, have been extended, so as to fit this class of dynamical systems, in some previous

13th European Workshop on Advanced Control and Diagnosis (ACD 2016)                                     IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 783 (2017) 012044          doi:10.1088/1742-6596/783/1/012044

4



+
-

+
+

ΣS

Σ̃M

ΣR

d(t)

u(t)

ΣM

h(t) y(t)

yM (t)

yS(t)

Σ

Figure 2. Block diagram for feedforward disturbance decoupling

papers [5, 6, 13]. However, in the specific case dealt with in this work, the extended linear impulsive
system Σ shows a direct feedthrough term from the control input to the output. Consequently, the notion
of hybrid controlled invariance must be completed by the new notion of output-nulling hybrid controlled
invariance, as is illustrated below.

For the sake of immediacy, the following statements give the definitions of hybrid invariant subspace,
hybrid controlled invariant subspace and output-nulling hybrid controlled invariant subspace with ref-
erence to the extended linear impulsive system Σ. However, it is understood that the special structure
of the matrices of Σ shown in (1)–(3) does not play any role in these definitions. The symbol H will
be used henceforth to denote hybrid invariance and hybrid controlled invariance. The short notations B
and H are used to denote ImB and ImH , respectively. A subspace V ⊆X is said to be an H -invariant
subspace if AV ⊆V and J V ⊆V . A subspace V ⊆X is said to be an H -controlled invariant subspace
if AV ⊆V +B and J V ⊆V . Furthermore, it can be shown that a subspace V ⊆X , with a basis matrix
V , is an H -controlled invariant subspace if and only there exist matrices LA, LJ , and M such that
AV =V LA+BM and J V =V LJ . Hence, the definition of output-nulling H -controlled invariant
subspace is introduced as follows.

Definition 1 A subspace V ⊆X , with a basis matrix V , is said to be an output-nulling H -controlled
invariant subspace if there exist matrices LA, LJ , and M such that AV =V LA+BM , J V =V LJ ,
and C V =DM .

Moreover, the notion of output-nulling H -controlled invariant subspace is characterized by the follow-
ing necessary and sufficient condition, whose proof is a consequence of the properties enjoyed by simul-
taneous invariant and output-nulling controlled invariant subspaces in linear time-invariant systems.

Proposition 1 A subspace V ⊆X is an output-nulling H -controlled invariant subspace if and only
if there exists a linear map F such that (A+B F )V ⊆V and V ⊆Ker (C +DF ) hold along with
J V ⊆V .

Any linear map F satisfying the conditions of Proposition 1 is said to be a friend of the output-nulling
H -controlled invariant subspace V .

As can be shown by simple algebraic arguments, the set of all output-nulling H -controlled invariant
subspaces is an upper semilattice with respect to the sum and the inclusion of subspaces. The maximum
of the set of all output-nulling H -controlled invariant subspaces is henceforth denoted by V∗

H .

5. Feedforward disturbance decoupling for the extended linear impulsive system — problem
solution
The geometric notions introduced in the previous section allow us to completely characterize the solv-
ability of Problem 2 by a necessary and sufficient condition, which is the purpose of this section. As
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will be clear from the following, such condition consists of an inclusion of subspaces, so that it can be
given in coordinate-free terms. However, since the if-part of the proof is constructive, it is convenient to
make some preliminary remarks, aimed at expressing that condition with respect to conveniently chosen
coordinates.

Firstly, it is worth pointing out that the linear map A+B F , where F is a friend of the maximal
output-nulling H -controlled invariant subspace V∗

H , is represented by a matrix with a characteristic
upper block-triangular structure, provided that a suitable change of coordinates is performed in the state
space. More precisely, let the similarity transformation T be defined by T = [T1 T2 ], with ImT1=V∗

H .
Then, with respect to the new coordinates,

A′ +B′ F ′ = T−1 (A+B F )T =

[
A′

11 +B′
1 F

′
1 A′

12 +B′
1 F

′
2

0 A′
22 +B′

2 F
′
2

]
, (4)

where the structural zero submatrix in the lower left corner — namely,

A′
21 +B′

2 F
′
1 = 0, (5)

is due to (A+B F )-invariance of V∗
H . A similar reasoning holds for the linear map J , which, with

respect to the same coordinates, is represented by

J ′ = T−1 J T =

[
J ′
11 J ′

12

0 J ′
22

]
, (6)

where the structural zero submatrix in the lower left corner is due to J-invariance of V∗
H . Moreover, with

respect to the same coordinates, the linear map C +DF , where F is the considered friend of V∗
H , is

represented by a matrix with a structural zero submatrix in the first block of columns. Namely, it ensues
that

C ′ +D′ F ′ = (C +DF )T =
[
0 C ′

2 +DF ′
2

]
, (7)

where the structural zero submatrix
C ′
1 +DF ′

1 = 0, (8)

is due to V∗
H ⊆Ker (C +DF ).

Secondly, it is useful to express the subspace inclusion that will be shown to be the necessary and
sufficient condition for solvability of Problem 2 in a coordinate-dependent fashion and, in particular,
with respect to the basis introduced above. Namely, the subspace inclusion

H ⊆ V∗
H (9)

holds if and only if

H ′ = T−1H =

[
H ′

1

0

]
. (10)

In fact, the structural zero block in H ′ expresses the condition that a basis matrix of the subspace H is a
linear combination of the column vectors of the basis matrix T1 of V∗

H .
Hence, the necessary and sufficient condition for Problem 2 to have a solution can be stated as follows.

Theorem 1 Let the linear impulsive system Σ be given. Problem 2 has a solution if and only if (9) holds.

Proof: If. Let (9) hold. Let F be a friend of V∗
H . Hence, with respect to suitably chosen coordinates,

(4), (6), (7), and (10) hold. The remainder of this proof of sufficiency will refer to these coordinates. Let
the hybrid linear regulator ΣR be defined by the following matrices:

A′
R = A′

11 +B′
1 F

′
1, B′

R = H ′
1, J ′

R = J ′
11, C ′

R = F ′
1.
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Then, it will be shown that the regulator ΣR thus defined, with zero initial state, solves Problem 2. To
this aim, note that the cascade — denoted by Σ̃ in Problem 2 — between the linear impulsive regulator
ΣR and the extended linear impulsive system Σ is described by

Σ̃ ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = A′
11 x1(t) +A′

12 x2(t) +B′
1 F

′
1 xR(t) +H ′

1 h(t), t∈R
+ \ T ,

ẋ2(t) = A′
21 x1(t) +A′

22 x2(t) +B′
2 F

′
1 xR(t), t∈R

+ \ T ,
ẋR(t) = (A′

11 +B′
1 F

′
1)xR(t) +H ′

1 h(t), t∈R
+ \ T ,

x1(tk) = J ′
11 x

−
1 (tk) + J ′

12 x
−
2 (tk), tk ∈T ,

x2(tk) = J ′
22 x

−
2 (tk), tk ∈T ,

xR(tk) = J ′
11 x

−
R(tk), tk ∈T ,

y(t) = C ′
1 x1(t) + C ′

2 x2(t) +DF ′
1 xR(t), t∈R

+,

where the state of Σ has been partitioned as x=
[
x�1 x�2

]�
according to (4), (6), (7), and (10). By

applying the change of variables η(t)=x1(t)−xR(t), with t∈R
+, the system Σ̃ can also be written as

Σ̃ ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

η̇(t) = A′
11 η(t) +A′

12 x2(t), t∈R
+ \ T ,

ẋ2(t) = A′
21 η(t) +A′

22 x2(t), t∈R
+ \ T ,

ẋR(t) = (A′
11 +B′

1 F
′
1)xR(t) +H ′

1 h(t), t∈R
+ \ T ,

η(tk) = J ′
11 η

−(tk) + J ′
12 x

−
2 (tk), tk ∈T ,

x2(tk) = J ′
22 x

−
2 (tk), tk ∈T ,

xR(tk) = J ′
11 x

−
R(tk), tk ∈T ,

y(t) = C ′
1 η(t) + C ′

2 x2(t), t∈R
+,

where (5) and (8) have been taken into account. Hence, the assumption of zero initial state implies
η(t)= 0 and x2(t)= 0, for all t∈R

+, which also implies y(t)= 0, for all t∈R
+, for all the admissible

input functions h(t), with t∈R
+, and all the admissible jump time sequences T ∈T .

Only if. If (9) does not hold, no other output-nulling H -controlled invariant subspace containing H
exists, since the set of all output-nulling H -controlled invariant subspaces is an upper semilattice and
V∗

H is the maximum.

6. Model matching by output feedback — problem solution
The aim of this section is to show that the problem of feedforward disturbance decoupling for the
extended linear impulsive system solved in Section 5 is equivalent to the output feedback model matching
problem stated in Section 2. In other words, a linear impulsive regulator solves any of these problems if
and only if it also solves the other one. The following theorem formalizes this result.

Theorem 2 A linear impulsive regulator ΣR solves Problem 2 if and only if it solves Problem 1.

Proof: If. Let the linear impulsive regulator ΣR solve Problem 1. Hence, the overall linear impulsive
system with measurement feedback — henceforth denoted by Σ̃′ — is described by

Σ̃′≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋS(t) = AS xS(t) +BS CR xR(t), t∈R
+ \ T ,

ẋR(t) = −BR CS xS(t) + (AR −BR DS CR)xR(t) +BR d(t), t∈R
+ \ T ,

ẋM (t) = AM xM (t) +BM d(t), t∈R
+ \ T ,

xS(tk) = JS x−S (tk), tk ∈T ,
xR(tk) = JR x−R(tk), tk ∈T ,
xM (tk) = JM x−M (tk), tk ∈T ,

y(t) = CS xS(t) +DS CR xR(t)− CM xM (t), t∈R
+.

(11)

Note that, since ΣR solves Problem 1, on the assumption of zero initial state, the output of Σ̃′ satisfies the
condition that y(t)= 0, for all t∈R

+, for all the admissible input functions d(t), with t∈R
+. Hence,
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one can replace yS(t)=CS xS(t)+DS CR xR(t) with yM (t)=CM xM (t) in the state equations of Σ̃′.
Thus, the following equations for the new system henceforth denoted by Σ̃′′ are obtained:

Σ̃′′≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋS(t) = AS xS(t) +BS CR xR(t), t∈R
+ \ T ,

ẋR(t) = AR xR(t)−BR CM xM (t) +BR d(t), t∈R
+ \ T ,

ẋM (t) = AM xM (t) +BM d(t), t∈R
+ \ T ,

xS(tk) = JS x−S (tk), tk ∈T ,
xR(tk) = JR x−R(tk), tk ∈T ,
xM (tk) = JM x−M (tk), tk ∈T ,

y(t) = CS xS(t) +DS CR xR(t)− CM xM (t), t∈R
+.

(12)

Moreover, since y(t)= 0 for all t∈R
+, for all the admissible d(t), with t∈R

+, such condition holds, in
particular, by picking d(t)=h(t)+CM xM (t), where h(t), with t∈R

+, denotes any admissible input
function. Then, the resulting system is the linear impulsive system Σ̃ considered in Problem 2, as is
shown by the following equations, derived from those of Σ̃′′ with the replacement mentioned above:

Σ̃≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋS(t) = AS xS(t) +BS CR xR(t), t∈R
+ \ T ,

ẋR(t) = AR xR(t) +BR h(t), t∈R
+ \ T ,

ẋM (t) = (AM +BM CM )xM (t) +BM h(t), t∈R
+ \ T ,

xS(tk) = JS x−S (tk), tk ∈T ,
xR(tk) = JR x−R(tk), tk ∈T ,
xM (tk) = JM x−M (tk), tk ∈T ,

y(t) = CS xS(t) +DS CR xR(t)− CM xM (t), t∈R
+.

(13)

The equations of Σ̃, which hold with y(t)= 0 for all t∈R
+, for all the admissible h(t), with t∈R

+,
show that the linear impulsive regulator ΣR also solves Problem 2: i.e., the problem of decoupling
the signal h(t), with t∈R

+, in the extended linear impulsive system Σ, including the modified linear
impulsive model Σ̃M .

Only if. Let the linear impulsive regulator ΣR solve Problem 2. Then, in order to show that ΣR also
solves Problem 1, the same reasoning presented in the proof of sufficiency can be followed backward —
i.e., from Σ̃ to Σ̃′.

7. Conclusions
In this work, the problem of finding a linear impulsive regulator ensuring that the forced response of a
given linear impulsive system matches that of a linear impulsive model, for all the admissible inputs and
all the admissible sequences of jump time instants, has been formulated. The solvability of the problem
has been characterized through a necessary and sufficient condition. A computational procedure for the
synthesis of the linear impulsive regulator has been illustrated through the if-part of the proof.
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