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Abstract. Enhanced approaches to PD controller design, adjusted for linear time-invariant
descriptor systems, are proposed in the paper. Presented in the sense of the second Lyapunov
method, an associated structure of linear matrix inequalities is outlined to possess the regular
closed-loop system dynamic properties. A simulation example, subject to the state and output
PD control, demonstrates the effectiveness of the proposed form of the design technique.

1. Introduction

Descriptor models are frequently used for modeling of industrial systems such as power system,
rigid body mechanisms or chemical processes (see, e.g., [6], [7], [10], [18] and the references
therein). The need for application-oriented simulation technique for such systems focused the
research activities at first on the conditions of system regularity and observability [1], [3], which
pave the basic way for controller and observer design algorithms, relying on the feasibility of a
system of linear matrix inequalities (LMI) [12], [15], [16]. In the descriptor system context, novel
bounded real lemmas for discrete and continuous-time descriptor systems are adressed in [2],
[11], respectively, an extension of the positive real lemma to descriptor systems is given in [4],
system output signal contraints are typically considered in the LMI synthesis of Hy and mixed
Hy/Hy controllers for singular systems in [19] and the state variables of a singular system can be
bounded solving singular LQ problem for descriptor systems by the way presented in [20]. From
the stand point of these principles, the main problem is the canonical form, or SVD coordinate
form, of the singular system description to be provided the required structural information
within design [9], [14]. It seems, for singular systems, to be very attractive in controller and
observer design to explore the potential of the Ljapunov matrix parametrization principle [5],
[17], to improve the system performances and to simplify the design conditions.

Adapting the idea presented in [17], two methods for proportional-derivative controller (PD)
design are proposed in the paper. Following examination of the PD state and output schemes,
enhanced algorithms using the Ljapunov matrix parametrization approach are provided. Applied
enhanced conditions in the control design develop a general framework for PD control structures
for continuous-time singular systems. The approach utilizes the measurable state or output
vector variables, the design conditions are based on linear matrix inequality (LMI) technique
(applicable conditiond by one matrix equality), which give an effective way to calculate the PD
control law parameters.
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The paper is organized as follows. Ensuing the introduction given in Sec. 1, Sec. 2 presents
the problem formulation focusing on assumptions about some dual singular system properties.
Thus, in Sec. 3 and Sec. 4, short descriptions of the main properties of the method exploiting
the Ljapunov matrix parametrization principle are presented and the enhanced conditions of
the PD controller existence are analyzed and proven in Sec. 5. Finaly, Sec. 6 presents the
simulation results and some concluding remarks are reached in Sec. 7.

Throughout the paper, the following notation was used: &, XT denotes the transpose of the
vector  and the matrix X, respectively, p(X) indicates the eigenvalue spectrum of the square
matrix X, for a square matrix X > 0 (> 0) means that X is a symmetric positive (semi)definite
matrix, the symbol I,, indicates the n-th order unit matrix, IR notes the set of real numbers, and
IR™, IR™™" refer to the set of all n-dimensional real vectors and n X r real matrices, respectively.

2. Problem formulation

A linear, time-invariant descriptor multi-input, multi-output (MIMO) system in presence of an
unknown disturbance can be described by the state-space equations in the following form

Ei(t) = Ax(t) + Bu(t) + Dd(t), (1)

y(t) = Cx(t), (2)
where x(t) € R", u(t) € IR", and y(t) € IR™ are vectors of the system, input and output
variables, respectively, d(t) € IRP is the external disturbance vector, A € IR™*™ is the system
dynamic matrix, B € IR™*" is the system input matrix C' € IR™*"™ is the system output matrix,
D € IR"*? is the disturbance input matrix and E € IR"*" is a singular matrix.

It is considered that the pair (A, B) is controllable and the control law is of the form

u(t) = —Kux(t), (3)

where K € IR"™*"™ is the control gain matrix. This implies the closed-loop system description in
the form

Ei(t) = A.x(t) + Dd(t), (4)
y(t) =Cx(1), (5)

where
A.= A—- BK (6)

is the closed-loop system dynamic matrix.
The transfer function of the closed-loop system (4), (5) is

G(s)=C(sE - A.)"'D, (7)

where a complex number s is the transform variable (Laplace variable) of the Laplace transform.
Since

1G(8)lloc <7 = [Ga(s)lloc < (8)
where ||G(S)||oo is the Hy norm of the transfer function (7) and ||G4(s)|leo is the Hy norm of
the dual system transfer function

Gy(s) = DT (sET — A1) 1CT, (9)

it is more suitable in the control law parameter design for descriptor system (4), (5) to work
with the dual state-space description of the closed-loop system

E"q(t) = A q(t) + CTg(t), (10)
z(t) = Dq(t). (11)

where g(t) € IR™, z(t) € IRP are associated input and output vector variables.
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3. Full state feedback control design
These propositions give necessary and sufficient conditions for (1), (2) to be admissible.
Proposition 1 The closed-loop singular system in (4), (5) is admissible if for given a nonzero

square matriz S € IR™"™ satisfying the condition SE = 0 there exist a symmetric positive
definite matrix T € IR™™ and matrices Q € IR™™™, Y € IR"™*" such that

T=T">0, (12)
A(TET +QS) + (TE" + Q8)"AT - By - YTB” <0. (13)
When the above conditions hold, the control law gain matrix is given by
K=Y (TE" +QS)™". (14)
Proof: Considering the Lyapunov function candidate in the following form
v(a(t) = q" (1) EPq(t). (15)
EP=P'ET >0 (16)

and P € IR™" is a square matrix, then the time derivative of (15) for the disturbance free
system (10), (11) takes the form

o(q(t)) =4 (t)EPq(t)+q" ()PTE"4(1)

_ " ()(AP + P AD)q(t) < 0. (17)
Evidently, this implies
AP +PTAT <0. (18)
Inserting in (18) the matrix (6) and the matrix P parametrized as [17]
P=TE" +QS, (19)

where T € IR™ ™ is a positive definite matrix, Q € IR™ "™ is a square matrix and the matrix
S € IR™*" is a non-zero square matrix such that

SE =0, (20)
then (18) gives
(A— BK)(TE" +QS) + (TE" + QS)"(A- BK)' <0. (21)
Using the notation
Y = K(TE” + Q8), (22)
then (21) implies (13). This concludes the proof. [

Proposition 2 The closed-loop singular system in (4) and (5) is admissible if for given a
nonzero square matrix S € IR"™™™ satisfying the condition SE = 0 there exist a symmetric
positive definite matriz T € IR™™™, matrices Q € IR™*™, Y € IR"*™ and a positive scalar v € IR
such that

T=T">0, >0, (23)
A(TET +QS) + (TET +QS)"AT - BY - Y'BT « s
C(TET +QS) —I,  * <0. (24)
D” 0 I,
When the above conditions hold, the control law gain matrix is given by
K=Y (TE" +Q8)™". (25)

Hereafter, * denotes the symmetric item in a symmetric matriz.
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Proof: Considering the Lyapunov function candidate in the form

v(g(t)) = q" () EPq(t) + 7 /0 t(zT(T)Z(T) —7%g" (1)g(7))dr >0, (26)
where
EP=PT'ET >0 (27)

and P € IR™" is a square matrix, then the time derivative of (26) for the system (10), (11)
takes the form

i(q(t) =q"(t)EPq(t) + q" () PTE"q(t) + v 27 (t)z(t) — vg” (t)g(t)
=q"(t)(A.P + PTAT +y"'DD")q(t) (28)
+ g (t)CPq(t) + ¢ (t)P"CTg(t) — g™ (t)g(t) < 0.

Defining the composed vector

al(t)=[ a"(t) g"(t) |, (29)
(28) can be written as
(q(t)) = qi () Peq.(t) <0, (30)
where )
| A.P+PTAT +~'DDT PTCT
P.= CP I, <0. (31)
Then, the Schur complement implies
[ A.P+PTAT PTCcT D
CcP 1, 0 <0 (32)
I D" 0 I,

and, substituting in (32) the matrices (6) and (19), the following inequality is obtained
(A—- BK)(TE" +QS)+ (TET +Q8)"(A- BK)" (TET +Q8)"c” D

C(TE" + Q8) —~I,, 0 <0.
DT 0 I,
(33)
Using the notation (22) then (33) implies (24). This concludes the proof. [

Note, a pair (E; A) is admissible if is regular and has neither impulsive modes nor unstable
finite modes. In this sense, the proposition can be used to design the gain matrix K.

4. Static output control

The following theorems give necessary and sufficient conditions for system (1), (2) under static
output control to be admissible.

Theorem 1 The closed-loop singular system in (4) and (5) is admissible if for given a nonzero

square matriz S € IR™" satisfying the condition SE = 0 there exist a symmetric positive
definite matriz T € IR™"™ and matrices H € R™*™, Q € R"*", Y, € IR"™*™ such that
T=T">0, (34)
A(TET +QS) + (TET + QS)"AT - By ,c -C'YIBT <0, (35)
C(TE" +QS)=HC. (36)
When the above conditions hold, the control law gain matrix is given by
K,=Y,H ' (37)
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Proof: The static output feedback control law is defined as
u(t) = —Koy(t) = —K,Cux(t), (38)

where K, € IR"™*™ is the control law gain matrix. This implies the closed-loop system state-
space equations

Ex(t) = Acx(t) + Dd(t), (39)
y(t) = Cx(t), (40)

where
A, =A—-BK,C (41)

is the closed-loop system matrix. Thus, the dual state-space description of the closed-loop
system takes the form
ETq(t) = AlLq(t) + CTg(t), (42)

z(t) = DTq(t). (43)

Considering the Lyapunov function candidate as in (15), (16) then, analogously to (18), it can
obtain for the disturbance free system that

AP+ PTAL <0 (44)
and substituting (19) and (41) it yields
(A- BK,C)TE" +QS) + (TE" +QS)"(A - BK,C)". (45)
Writing here
BK,C(TE" +QS)=BK,HH 'C(TE" + QS) = BK,HC = BY ,C, (46)

where H € IR™*™ is a regular matrix and

H'C=C(TE" +QS)™!, (47)
Y, = K,H, (48)
then (45) implies (35) and (47) gives (36), This concludes the proof. [

Theorem 2 The closed-loop square singular system in (4) and (5) is admissible if for given
a nonzero square matriz S € IR™™ satisfying the condition SE = 0 there exist a symmetric
positive definite matriz T € IR™ ™, matrices H € R™™, Q € R"™"™, Y, € IR"™*™ and a
positive scalar v € IR such that

T=T">0, ~>0, (49)
A(TET +QS) + (TET +QS)"AT - BY ,C - CTYIBT & %
C(TET +QS) —~I,, * <0, (50)
DT 0 I,
C(TE' +QS)=HC. (51)

When the above conditions hold, the control law gain matrix is given by

K,=Y,H ' (52)
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Proof: Considering the Lyapunov function candidate in the form (26), (27) then, analogously to
(31), it can obtain that

A,P+PTAL PTc? D
CP I, 0 |<o. (53)
DT 0 I,
Substituting in (53) the matrices (19) and (41), the following inequality is obtained

(A—- BK,C)(TE"+QS)+ (TE"+QS)"(A-BK,C)" (TET+QS)"cT D

C(TET + Q8) —I,, 0 | <0
D* 0 —~I,
(54)
and using the substitutions (47), (48) then (54) implies (50). This concludes the proof. [

5. PD feedback control design

The results of the previous sections can be extended to LMI-based control design conditions for
linear time-invariant descriptor systems.

Lemma 1 The generalized dual state-space description of the descriptor system with full state
PD feedback control takes the form

E*Tq (1) = AT (t) + C*Tg(t), (55)
z(t) = D q"(t), (56)
where
a"(t)=[ a") ") ], (57)
A.=A-BK, W.=FE+ BL, (58)
EoT:[IOTL 8]7A0T:[£Z _{;Z]»C.T:lgT]aD.T:[DT 0}‘ (59)

Proof: The full state PD feedback control law is defined as
u(t) = —Kax(t) — Li(t), (60)

where K, L € IR™*" are the control law gain matrices. This implies the closed-loop system

state-space equations
(E + BL)&(t) = (A - BK)x(t) + Dd(t), (61)

y(t) = Cx(t). (62)

Using the notations (58), the dual state-space description of the closed-loop system with the full
state PD feedback control is

Wea(t) = AZq(t) + CTg(t), (63)
z(t) = DT q(t). (64)
Considering the equality
q(t) = q(t) (65)
and rewriting (64) as
Alq(t) + CTg(t) - Wiq(t) =0, (66)
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then (65) and (66) can be written compactly as

I, O 7(t) 0 I, (t) 0
{0 OHg(t)}:[AZ —WZHZ@)}JF CT]g(t)’ (67)
while (65) implies
z(t) = { DT o } [ gg; } . (68)
Using the notations (57), (59), then (67), (68) implies (55), (56), respectively. This concludes
the proof. .

Lemma 2 The generalized dual state-space description of the descriptor system with output PD
feedback control takes the form

ETqt(t) = ASTq*(t) + C*Tg(t), (69)
z(t) = D*"q* (1), (70)
where
a"(t)=[ a") ") ], (71)
A,=A-BK,C, W,=E+BL,C, (72)
BT _ IOn 8]’A;T:l£z; —II);Z;]’C.T:[(?T]’D.T:{DT 0}' (73)

Proof: The output PD feedback control law is defined as
u(t) = —Koy(t) — Loy(t) = —KCx(t) — L,C(t), (74)

where K,, L, € IR™*™ are the control law gain matrices. This implies the closed-loop system
state-space equations

(E + BL,C)&(t) = (A — BK,C)z(t) + Dd(t), (75)

y(t) = Cxz(t). (76)

Applying the notations (72), the dual state-space description of the closed-loop system with the
output PD feedback control is

Wea(t) = Ala(t) + Clg(t), (77)
=(t) = D q(1). (78)

Following the same way as before, it can obtain
L,oolfan]_[ o L. lraw],
0 o) qt | | AL -wi || a()

2(t)=[ DT o] [ Zgg } (80)

and using the notations (71), (73), then (79), (80) implies (69), (70), respectively. This concludes
the proof. ]

CT ] g(t)a (79)
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Theorem 3 The closed-loop singular system in (4) and (5) is admissible if for given positive
0 € IR and a nonzero square matriz S € IR™" satisfying the condition SE = 0 there exist
symmetric positive definite matrices P, T € IR™", matrices Q € IR"™™, Y, Z € IR™*" and a
positive scalar v € IR such that

P=P'>0, T=T">0, ~v>0, (81)

®(1,1) * * *

®(2,1) —®(2,2) * *
C(TET +QS) 6C(TET +QS) —~I, * |~ (82)

DT 0 0 I,

®(1,1) = A(TET + QS)+ (TET + QS)"AT - By —Y'BT, (83)
®(2,1) =6(TET +QS)TAT —sY"BY + P - E(TET +QS) - BZ, (84)
®(2,2) = E(TET + QS)+ 6(TET + QS)'E" +6BZ +5Z" BT . (85)

When the above conditions hold, the control law gain matrices are given by
K=Y (TE" +QS)"!, L=Z(TE"+QS)™" (86)

Proof: Considering the Lyapunov function candidate in the form

oa"(1) = ¢ OB Pa) + 1 [T )2() — g (g dr >0, (87

where
E*P* =P TE" >0 (88)

and P* € IR>™?" is a square matrix, then following the same way as above it can obtain in
analogy with (32) that

A°P* + PoTAoT PoTCoT D*
c'p* —~I, 0 |<0. (89)
DT 0 —1I,

Considering the matrix P*® of the following form

[P P
P p m (80)

then with respect to (88)

o po oT poT
oo llE El[E BT o o
which gives
B -
It is evident that (92) can be satisfied only if
P=P;=P">0, P;=P5 =0. (93)
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Thus, using (93), it yields

epe [0 A[PS O7_[ AP AP
ar =P e e e e wir (64
o pe Py 0 0 o
C*'P*=]0 C]{Pé PZ]:[CP3 CPj | (95)
and, after some algebraic manipulations, (89) takes the following form
AP+ PTAT AP+ P; - PTWT pifct D
PTAT + P -W . P, -W.P;-PIWI  pPTCcT 0 -0 (96)
CP;3 CP; I, O '
DT 0 0 —I,
Applying the substitutions
P,=TE" +QS, P;=/P3, (97)
Y = K(TET +QS), Z=L(TET +QS), (98)

where ¢ € IR is a positive scalar, T' € IR™*" is a positive definite matrix, Q € IR™*"™ is a square
matrix and the matrix S € IR™*" is a non-zero square matrix such that SE = 0, then

®(1,1) = AP+ Py Al = A(TET +QS) + (TE" +QS)" A" - BY - Y'B", (99)
®(2,2) = W P, + P{YW! = E(TE” + QS) + (TE" + QS)"E" +§BZ +§Z" B, (100)
®(2,1) =PTAT + P} - W P3

=6(TE"+QS)" A" —5Y"B" + P{ - E(TE" + QS) - BZ, (101)

CP; =C(TE" +Q89), (102)

CP =0C(TET +QS). (103)

Using the notations given above, the resulting formulas to (96) take the forms (82)-(85). This
concludes the proof. [ ]

Theorem 4 The closed-loop square singular system in (4) and (5) is admissible if for given
positive 6 € IR and a nonzero square matriz S € IR™" satisfying the condition SE = 0 there
exist symmetric positive definite matrices P, T € IR™*", matrices Q € R"*", Y ,, Z, € IR"™*™,
a reqular matriz H € IR™™ and a positive scalar v € IR such that

P=P'>0, T=T">0, ~v>0, (104)
®,(1,1) * * *
C(:;I)E(Tzl1 )QS) 50(13%1%3) —fy*Im .| <o (105)
D7 0 0 I,
®,(1,1) = A(TE" +QS) + (TET + QS)" AT - By ,C - CTY!B”, (106)
®,2,1)=6(TE" +Q8)"AT —sY"B" + P - E(TE" +QS) - BZ,C, (107)
®,(2,2) =E(TE" +QS) +d(TE" + QS)'E" + sBZ,C +5C"zI BT . (108)
C(TET +QS)=HC, (109)
When the above conditions hold, the control law gain matrices are given by
K,=Y,H' L,=2Z,H " (110)
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Proof: Considering the Lyapunov function candidate (87), (88) and following the same way as
above, after some algebraic manipulations it can be obtained

A, PS5+ PST AT AP+ P - PYWI ps'ct D
PTAL + P - W P —-W.,P,—PIwWL pPiTct o

cPs cpe A1 o | <0 (111)
DT 0 0 I,
Using the substitutions (47), (97) it yields
BK,C(TE" +QS)=BK,HH 'C(TE" + QS) = BK,HC = BY ,C, (112)

BL,C(TE" +QS)= BLLHH 'C(TE” + QS) = BL,HC = BZ,C, (113)

and, consequently,
®,(1,1) = A, P5+PyTAL = A(TE' +QS)+(TE"+QS)' A" -BY ,C-C*"YIB”, (114)

®(2,2) = WP, + PYYW. = E(TE" +QS) + (TE" + QS)"E" + ¢BZ,C +sC*ZI B”,

(115)
=§(TET +Q8)"AT —sCTYTB? + P; - E(TET + QS) - BZC,
where
Y,=K,H, Z,=L,H. (117)
Using (102), (103) together with (114)-(116), the resulting formulas to (111) take the forms
(105)-(108). This concludes the proof. [

6. Illustrative example

In the example, there is considered the system (1), (2) in the state-space representation, where
the system matrices are

~1.0522 —1.8666  0.5102 000 301 0.5
A=| -04380 —54335 09205 |,E=|0 1 0|,B=|1 -1|,D=]| 00|,
—~0.5522  0.1334 —0.4898 00 1 30 —0.4
100
s=|ooo]e=[110]
000

Solving (81), (82) using Self-Dual-Minimization (SeDuMi) package [13] for MATLAB, the PD
control parameter design is feasible for § = 8.5 and

0.4317  4.3529 —0.6160
—0.2470 —-0.6160  3.7778

, T'=1] —0.1005  0.1029 —0.0287

3.7029 04317 —0.2470
P =
0.0306 —0.0287  0.2532

2.3214 -0.1005  0.0306 }

y — [ 0.0154 —0.0040  0.1063 ] 7 _ [ 0.0154 —-0.0040  0.1063 }

0.3175 —0.0202 —-0.2021 0.3175 —0.0202 —-0.2021

—-0.0568 0 O
Q= 0.0586 0 0O |, v=3.1113,
-0.0638 0 O

10
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The PD state control gain matrices are computed using (86) as follows

K 42.7410  41.6846 —0.0198] L—[ 25.6406  25.1733 —0.2372

~ | 324.6550 315.5865 —4.2538 125.1027 120.9441 —1.5855 |’

and because the matrix W, = E + BL is regular, the closed-loop of given singular system
is regular and the control law guaranties the stable matrix A, = Wc_lAc, where the regular
closed-loop system matrix eigenvalues spectrum is

p(As) = {~1.6619 —2.1503 — 3.2236} .

Setting the tuning parameter 6 = 8.5 and solving the conditions (104)-(106), the LMI matrix
variables are

2.5516 1.7656 —1.2073
1.7656 5.4100  0.0585
—1.2073 0.0585  2.1754

P = , T'=| —0.1202 0.1329 —-0.0131

0.0228 —0.0131  0.2250

2.7041 —-0.1202  0.0228 ]

y — —0.0161  0.0499 7 _ 0.0284  0.0019 H— 0.0029 0.0097
o 0.2263 —0.2072 |’ ¢ | 0.0867 —0.1082 |’ - [ =0.0921 0.2119 |’

—0.0546 0 O
Q= 0.0575 0 0 |, v=2.9852.
—0.1496 0 O

The obtained output PD controller gain matrices are

K, — [ 0.7739  0.1999 } L, — [ 4.0836 —0.1787

19.0529 —1.8541 5.5590 —0.7660

and because the matrix W,, = E + BL,C is regular, the closed-loop with the singular system
under the output PD controller is regular and guaranties the stable matrix A, = W;}Aco,
where the regular closed-loop system matrix eigenvalues spectrum is

p(Asro) = {—0.9701 — 1.3546 — 4.5882}.

Thus, one can see that the assymptotic stability is guarantied.

7. Concluding remarks

In the paper, new enhanced formulations of the PD control parameter design for continuous-
time descriptor linear systems are given in the strict LMI forms to retain admissibility condition
and eliminate the impulsive modes of the plant. Applying linear feedback PD control laws
to the system (1), (2), the triple (A,E,B) is finite dynamics stabilizable. The proposed new
formulations are fully adapted to the Ho,control problem design by introducing a tuning slack
variable. The design approach can be preferable in computations, and simple in a reference model
control, since gives the regular nominal closed-loop system dynamic properties. A simulation
example, subject to given type of controller, demonstrates the effectiveness of the proposed
LMI-based design forms.
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