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Abstract. The robust stabilization of uncertain saturated neutral systems with state delay
is solved in this paper: based on a free weighting matrix approach, sufficient conditions are
obtained via an LMI formulation. From these conditions, state feedback gains that ensure
stability for the largest set of admissible initial conditions can be calculated solving optimization
problems with LMI constraints. Some applications of this methodology to feedback control are
then presented and compared with previous results in the literature.

1. Introduction
The stability analysis of time-delay systems is a topic of theoretical and practical importance,
because delays appear in many areas: mechanics, physics, biology, economy, epidemics,
population dynamic models, large-scale systems, automatic control systems, neural networks,
chaotic systems, practical control system, and so on. It is well known that delays often lead to
poor system performance, even instabilities. Therefore, stability analysis of time-delay systems
has been extensively studied by many researchers (see, for example, [3, 18, 19, 28, 29]).

Moreover, almost all practical control systems are subject to input saturation, because of
the existence of physical, technological or even safety constraints (see [5, 6, 7, 8, 13]). Input
saturation is a also a source of performance degradation, generating also limit cycles, multiple
equilibrium points and even instability. For time-delay systems, some works addressing the
stability analysis and stabilization in the presence of saturating control signals can be found in
the literature. In [27], conditions for stability or stabilization are proposed with state feedback.
However, in that paper, the set of admissible initial conditions, for which the asymptotic stability
is ensured (i.e. the domain of attraction) in the presence of control saturation, is not mentioned
or explicitly defined. In [1], method for computing stabilizing state feedback control laws aiming
at enlarging well defined estimates of the domain of attraction of the closed-loop system have
been proposed. This method is based on the use of polytopic differential inclusions for describing
the behavior of the closed-loop system with saturating inputs. In [25], the synthesis of stabilizing
static anti-windup loops is addressed for the case of retarded systems presenting fixed delays.
On the other hand, considering neutral systems, we can cite [11, 12, 19, 26]. In that paper,
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using a polytopic approach for modelling saturation effects, a method for computing stabilizing
state feedback controls with the aim of maximizing the set of admissible initial conditions is
proposed.

Thus, in this paper the stabilization problem for neutral systems with time-varying delay
and actuator saturation subject to uncertainty is solved. By incorporating Lyapunov-Krasovskii
(L-K) functional theory, free-weighting matrix technique, integral inequalities and function that
corresponds to a decentralized dead-zone nonlinearity, then efficient stabilization conditions are
obtained in terms of LMIs. Compared with the existing results, an optimization problem is
formulated with the aim of computing stabilizing state feedback control laws. This optimization
problem search the maximal delay bound for which a stabilizing control law can be found. On
the other hand, when the open-loop system is unstable, the optimization objective consists in
finding a control law that maximizes an estimate of the domain of attraction, or alternatively
that ensures the stability for a given set of admissible initial states.

The rest of this paper is organized as follows: in Section 2, we formulate the problem of
stabilization of uncertain neutral time-delay system with saturating actuator. The main results
are presented in Section 3. Finally, three numerical examples are included to illustrate the
results developed in this paper.

Notation: The Banach space of continuous vector functions mapping the interval [−hm, 0] into
�n with the norm ‖φ‖c = sup−hm≤t≤0 ‖φ(t)‖ is denoted by Chm = C([−hm, 0],�n). Additionally,

λ(P ) denotes the maximal eigenvalue of matrix P .

2. Problem Formulation and Preliminaries
Consider the following uncertain neutral delayed system with saturating actuators

ẋ(t)− (C +ΔC(t))ẋ(t− τ(t)) = (A+ΔA(t))x(t) + (Ad +ΔAd(t))x(t− τ(t)) +Bu(t)

x(t) = φ(t), ∀t ∈ [−hm, 0], φ(t) ∈ Chm (1)

where x(t) ∈ �n and u(t) ∈ �m are respectively the state and the control vectors. The matrices
C, A, Ad and B are real constants of appropriate dimensions. the delay τ(t) is assumed to be
unknown but bounded function of time, continuously differentiable, with their rate of change
bounded as follows

0 ≤ τ(t) ≤ hm , τ̇(t) ≤ d (2)

we assume 0 < d < 1 to ensure causality (see [3]).
In this paper, the uncertainties can be described as follows

[ΔA(t) ΔAd(t) ΔC(t)] = DF (t)[E0 E1 E2] (3)

where D, E0, E1 and E2 are known real matrices of appropriate dimensions, and F (t)
denotes the time-varying parameter uncertainties with Lebesgue-measurable elements satisfying
F T (t)F (t) ≤ I, ∀t ≥ 0.

We suppose that the input vector u is subject to amplitude limitations defined as follows

|ui| ≤ u0i, u0i > 0; i = 1, . . . ,m (4)

The control input is u(t) = Kx(t). Due to the control bounds defined in (4), the effective
control signal to be applied to the system is u(t) = sat(Kx(t)) where ui(t) = sat(Kix(t)) =
sign(Kix(t))min{u0i, |Kix(t)|}.

Hence, the closed-loop system (1) reads

ẋ(t)− (C +ΔC(t))ẋ(t− τ(t)) = (A+ΔA(t))x(t) + (Ad +ΔAd(t))x(t− τ(t))

+Bsat(Kx(t)) (5)

13th European Workshop on Advanced Control and Diagnosis (ACD 2016)                                     IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 783 (2017) 012031          doi:10.1088/1742-6596/783/1/012031

2



In this paper, it is assumed that φ(t) is continuously differentiable over [−hm, 0], and one of
our interests is to estimate the domain of attraction of the following form

Ξ = {φ(t) ∈ Chm : ‖φ‖c ≤ δ1, ‖φ̇‖c ≤ δ2}
where δ1 and δ2 are some scalars to be determined.

Define the following function ψ(Kx(t)) = Kx(t) − sat(Kx(t)) where ψ(Kx(t)) corresponds
to a decentralized dead-zone nonlinearity. Thus, the closed-loop system (5) can be written as

ẋ(t)− (C +ΔC(t))ẋ(t− τ(t)) = (A+ΔA(t) +BK)x(t) + (Ad +ΔAd(t))x(t− τ(t))

−Bψ(Kx(t)) (6)

Furthermore, the following useful lemmas are used in this paper
Lemma 2.1: [24] Let Ω, D, and E be real matrices of appropriate dimensions. Then for any

F (t)

Ω +DF (t)E + ETF T (t)DT < 0

if and only if there exists some ε > 0 such that

Ω + εDDT + ε−1ETE < 0.

Lemma 2.2: [18] Jensen Inequality: For any scalar b > a, the following inequality holds

(b− a)

∫ b

a
xT (s)Rx(s)ds ≥

( ∫ b

a
x(s)ds

)T
R
( ∫ b

a
x(s)ds

)
Considering a matrix G and defining the following polyhedral set

S = {x(t) ∈ �n; |(K(i) −G(i))x(t)| ≤ u0(i)}
Lemma 2.3: [25] If x(t) ∈ S, then the following relation

ψT (Kx(t))T0

[
ψ(Kx(t))−Gx(t)

]
≤ 0

is verified for any diagonal positive matrix T0 ∈ �m×m.
Consider that x(t) ∈ S and the following L-K functional which will be used throughout the

paper

V (t) = xT (t)Px(t) +

∫ t

t−τ(t)
xT (s)Qx(s)ds+

∫ 0

−hm

∫ t

t+θ
ẋT (s)Rẋ(s)dsdθ

+

∫ t

t−τ(t)
ẋT (s)Wẋ(s)ds (7)

where P,Q,R,W > 0 need to be determined.
Finally, for a positive scalar β, the ellipsoid De is defined as follows

De = {x(t) ∈ �n; xT (t)Px(t) ≤ β−1}
The result in Lemma 2.3 can be seen as a generalized sector condition. As will be seen in the

sequel, differently from the classical sector condition (used for instance in [25]), this condition
will allow to obtain stability conditions directly in an LMI form.

The stabilization problems that we are interested in studying can be summarized as follows
Problem 2.1: Given d, maximize hm in order to ensure the robust stability of the closed-loop

system for some set of admissible initial conditions.
Problem 2.2: Given hm and d, find K and a set of admissible initial conditions, as large as

possible, for which the stability of the closed-loop system is ensured.
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3. Main Results
Some results are derived to ensure the robust stabilization of neutral system with saturating
actuators. These results will be applied to a real system control problem.

3.1. Stability results
Some results are established to ensure the asymptotic stabilization of the nominal system
(DF (t)E0 = DF (t)E1 = DF (t)E2 = 0). Next the robust stabilization of the uncertain system
is derived for any initial conditions in an estimated domain of attraction.

Lemma 3.1: If there exist symmetric positive definite matrices P , Q, R, W , appropriately
sized matrices T1, T2, Y1, Y2, T1, T2 and a positive definite diagonal matrix T0 satisfying

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ψ11 ∗ ∗ ∗ ∗ ∗
Ψ21 Ψ22 ∗ ∗ ∗ ∗
Ψ31 Ψ32 Ψ33 ∗ ∗ ∗
Ψ41 Ψ42 0 Ψ44 ∗ ∗
Ψ51 Ψ52 0 0 Ψ55 ∗
Ψ61 Ψ62 0 0 0 Ψ66

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (8)

where

Ψ11 = T1A+ATT T
1 + T1BK +KTBTT T

1 + Y1 + Y T
1 +Q, Ψ31 = AT

d T
T
1 − Y T

1

Ψ21 = −T T
1 + T2A+ T2BK + Y2 + P, Ψ22 = −T2 − T T

2 + hmR+W, Ψ32 = AT
d T

T
2 − Y T

2

Ψ33 = −(1− d)Q, Ψ41 = −Y T
1 , Ψ42 = −Y T

2 , Ψ44 = − R

hm
, Ψ51 = CTT T

1 , Ψ52 = CTT T
2

Ψ55 = −(1− d)W, Ψ61 = T0G−BTT T
1 , Ψ62 = −BTT T

2 , Ψ66 = −2T0

Then, the nominal system (6) is asymptotically stable.
Proof 1: Using (2), the time derivative of the functional (7) along the trajectory of the system

(6) is given by

V̇ (t) = 2xT (t)Pẋ(t) + xT (t)Qx(t)− (1− d)xT (t− τ(t))Qx(t− τ(t)) + hmẋT (t)Rẋ(t)

−
∫ t

t−τ(t)
ẋT (s)Rẋ(s)ds+ ẋT (t)Wẋ(t)− (1− d)ẋT (t− τ(t))Wẋ(t− τ(t))

Using the free weighting matrix approach, for appropriately dimensioned matrices T1, T2, Y1
and Y2, we have

2
[
xT (t)T1 + ẋT (t)T2

][
− ẋ(t) + Cẋ(t− τ(t)) + (A+BK)x(t) +Adx(t− τ(t))

−Bψ(Kx(t))
]
= 0

2
[
xT (t)Y1 + ẋT (t)Y2

][
x(t)− x(t− τ(t))−

∫ t

t−τ(t)
ẋ(s)ds

]
= 0 (9)

From Lemma 2.3, it follows that

V̇ (t) ≤ V̇ (t)− 2ψT (Kx(t))T0[ψ(Kx(t))−Gx(t)] (10)
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Then, applying Lemma 2.2, adding the terms on the left of (9) and (10) to V̇ (t) allows us to
express V̇ (t) as

V̇ (t) ≤ 2xT (t)Pẋ(t) + xT (t)Qx(t)− (1− d)
(
xT (t− τ(t))Qx(t− τ(t)) + ẋT (t− τ(t))

×Wẋ(t− τ(t))
)
+ ẋT (t)

(
hmR+W

)
ẋ(t)−

( ∫ t

t−τ(t)
ẋ(s)ds

)T R

hm

( ∫ t

t−τ(t)
ẋ(s)ds

)
+2

[
xT (t)T1 + ẋT (t)T2

][
− ẋ(t) + Cẋ(t− τ(t)) + (A+BK)x(t) +Adx(t− τ(t))

−Bψ(Kx(t))
]
+ 2

[
xT (t)Y1 + ẋT (t)Y2

][
x(t)− x(t− τ(t))−

∫ t

t−τ(t)
ẋ(s)ds

]
−2ψT (Kx(t))T0

[
ψ(Kx(t))−Gx(t)

]
(11)

By simple manipulation, (11) can be rewritten as

V̇ (t) ≤ ηT (t)Ψη(t)

where Ψ is defined in (8) and

ηT (t) =
[
xT (t) ẋT (t) xT (t− τ(t))

∫ t
t−τ(t) ẋ

T (s)ds ẋT (t− τ(t)) ψT (Kx(t))
]

The condition (8) holds implies that V̇ (t) < 0. It follows that the trajectories of nominal
system (6) converge asymptotically to the origin. This result gives a general solution for testing
stability. In the following, we provide a new result that permits a robust stabilizing controller
to be calculated. Thus, based on Lemma 3.1, some results are now derived to ensure robust
stabilization of saturated neutral state-delayed system subject to uncertainty (3).

Theorem 3.1: If there exist symmetric positive definite matrices P , Q, R, W , appropriately
sized matrices X, Y1, Y2, M , U , a diagonal matrix S of appropriate dimension, a real scalar α
and positive scalars ε, β, δ satisfying the conditions (12)-(14)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 + εDDT ∗ ∗ ∗ ∗ ∗ ∗
Ω21 + αεDDT Ω22 + α2εDDT ∗ ∗ ∗ ∗ ∗

Ω31 Ω32 Ω33 ∗ ∗ ∗ ∗
Ω41 Ω42 0 Ω44 ∗ ∗ ∗
Ω51 Ω52 0 0 Ω55 ∗ ∗
Ω61 Ω62 0 0 0 Ω66 ∗

E0X
T 0 E1X

T 0 E2X
T 0 −εI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (12)

[
P ∗

Ui −Mi βu20i

]
≥ 0, i = 1, ...,m (13)

(
λ(X−1PX−T ) + hmλ(X−1QX−T )

)
‖φ‖2c

+
(h2m

2
λ(X−1RX−T ) + hmλ(X−1WX−T )

)
‖φ̇‖2c ≤ β−1 (14)

where

Ω11 = AXT +XAT +BU + UTBT + Y1 + Y1
T
+Q, Ω21 = −X + αAXT + αBU + P + Y2

Ω22 = −αX − αXT + hmR+W, Ω31 = XAT
d − Y1

T
, Ω32 = αXAT

d − Y2
T

Ω33 = −(1− d)Q, Ω41 = −Y1
T
, Ω42 = −Y2

T
, Ω44 = − R

hm
, Ω51 = XCT , Ω52 = αXCT

Ω55 = −(1− d)W, Ω61 = M − SBT , Ω62 = −αSBT , Ω66 = −2ST
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then, the uncertain saturated delayed system is robustly stable and the trajectories of x(t)
remain within the ellipsoid De when the state feedback control law is used, with K = UX−T .

Proof 2: Set T2 = αT1, α > 0. From (8), it is easily seen that T2 is nonsingular and
consequently T1 is inversible. Multiplying (8) by diag{T−1

1 , T−1
1 , T−1

1 , T−1
1 , T−1

1 , T−1
0 } on the left

and by its transpose on the right. Then, introduce a new change of variables such that X = T−1
1 ,

U = KXT , M = GXT S = T−1
0 and Π = XΠXT where Π = P,Q,R,W, Y1, Y2. Thus, we obtain

the following equation

Ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 ∗ ∗ ∗ ∗ ∗
Ω21 Ω22 ∗ ∗ ∗ ∗
Ω31 Ω32 Ω33 ∗ ∗ ∗
Ω41 Ω42 0 Ω44 ∗ ∗
Ω51 Ω52 0 0 Ω55 ∗
Ω61 Ω62 0 0 0 Ω66

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (15)

Now, let us replace A, Ad and C by A + DF (t)E0, Ad + DF (t)E1 and C + DF (t)E2,
respectively. We find that equation (15) is equivalent to the following condition

Ω +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D
αD
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
F (t)

[
E0X

T 0 E1X
T 0 E2X

T 0
]

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

XET
0

0
XET

1

0
XET

2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
F T (t)

[
DT αDT 0 0 0 0

]
< 0

According to Lemma 2.1 and by the Schur complement we obtain LMI (12). On other hand,
the satisfaction of (13) guarantees that ∀x ∈ De, x ∈ S. In fact, De ⊂ S is verified by the
following conditions [

P ∗
Ki −Gi βu20i

]
≥ 0 (16)

pre and post multiplying (16) by Δ = diag{X, I} and its transpose will result in the LMI (13).
Moreover, the satisfaction of (14) can be proven as follows. From the L-K functional defined

in (7) we have

V (0) ≤ xT (0)Px(0) +

∫ 0

−hm

xT (s)Qx(s)ds+

∫ 0

−hm

∫ 0

θ
ẋT (s)Rẋ(s)dsdθ +

∫ 0

−hm

ẋT (s)Wẋ(s)ds

≤
(
λ(P ) + hmλ(Q)

)
‖φ(θ)‖2c +

(h2m
2

λ(R) + hmλ(W )
)
‖φ̇(θ)‖2c = δ

Therefore, we have xT (t)Px(t) ≤ V (t) ≤ V (0) ≤ δ ≤ β−1, that is for all t ≥ 0 the trajectories
of the system do not leave the set De for any initial functions φ(θ) in De which ensures that
x(t) ∈ S. This completes the proof.

The above results can be applied to the real system control problem by adopting a fourth-
order linearized model of the match number in a wind tunnel.
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3.2. Application to a feedback control of Mach Number in a Wind Tunnel
In steady-state operating conditions (some constant fan speed, liquid nitrogen injection rate,
and gaseous-nitrogen vent rate), the dynamic response of the Mach Number perturbations δM
to small perturbations in the guide vane angle actuator δθa in a driving fan is described by the
following equations [22, 23]

1

a
δṀ(t) + δM(t) = kδθ(t− τ(t))

δθ̈(t) + 2ξwδθ̇(t) + w2δθ(t) = w2δθa(t) (17)

where δθ is the guide vane angle, a, k, ξ, w are parameters depending on the operating point
which are presumed constant when the perturbation δM , δθ, δθa are small and the delay τ(t)
represents the time of the transport between the fan and the test section.

Rewriting (17) in state space form yields

ẋ(t) = Ax(t) +Adx(t− τ(t)) +Bsat(u(t)), t > 0

x(θ) = φ(θ), ∀θ ∈ [−hm, 0], φ(θ) ∈ Cv
hm

, (18)

where

x =

⎡⎣ δM
δθ
δθa

⎤⎦ , A =

⎡⎣ −a 0 0
0 0 1
0 −w2 −2ξw

⎤⎦ , Aτ =

⎡⎣ 0 ka 0
0 0 0
0 0 0

⎤⎦ , B =

⎡⎣ 0
0
w2

⎤⎦
The control u(t) represents δθa. This system can be seen as a particular case of nominal

system (5) when C = ΔA(t) = ΔAd(t) = ΔC(t) = 0. Then, the following theorem gives a
condition to stabilize system (18).

Theorem 3.2: If there exist symmetric positive definite matrices P , Q, R, appropriately sized
matrices X, Y1, Y2, M , U , a diagonal matrix S of appropriate dimension and a real scalar α
satisfying the condition (19)-(21)⎡⎢⎢⎢⎢⎢⎣

Ω11 ∗ ∗ ∗ ∗
Ω21 Ω22 −W ∗ ∗ ∗
Ω31 Ω32 Ω33 ∗ ∗
Ω41 Ω42 0 Ω44 ∗
Ω61 Ω62 0 0 Ω66

⎤⎥⎥⎥⎥⎥⎦ < 0 (19)

[
P ∗

Ui −Mi βu20i

]
≥ 0 (20)

(
λ(X−1PX−T ) + hmλ(X−1QX−T )

)
‖φ(θ)‖2c +

(h2m
2

λ(X−1RX−T )
)
‖φ̇(θ)‖2c ≤ β−1 (21)

then, the saturated state-delayed system (18) with the state feedback control law and K =
UX−T is robustly stable and the trajectories of x(t) remain within the ellipsoid De.

Proof 3: It suffices to follow the same steps of the Proof 1 and 2 considering W = 0, C = 0
and ΔA(t) = ΔAd(t) = ΔC(t) = 0.

Remark 3.1: In deriving Lemma 3.1, the slack variable T1, T2, Y1, Y2 are introduced in order
to reduce the conservatism of the asymptotic stability conditions. It can be seen from the Proof
1 that V̇ (t) remains unaffected by the introduction equation (9) i.e. the slack variables T1, T2,
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Y1, Y2. So these matrices leads to a more flexible LMI condition in (8) and consequently reduce
the conservatism of Lemma 3.1 and consequently that of the next results. This advantage can
be seen from the numerical examples.

Remark 3.2: In the above proof, the free-weighting matrices T1, T2, Y1, Y2 are employed to
offer more flexibility to our results which may lead to some improvements. Specifically, the first
equation of the (9) which is equal to zero, was added to the derivative of the L-K functional.
Moreover, the Leibniz-Newton formula was employed to obtain a delay-dependent criterion, and
the relationships between those terms was also taken into account. That is, the second equation
of the (9) which is equal to zero, was added to the derivative of the L-K functional, as well.

Remark 3.3: The tuning parameter α is designed to improve results and gives a better
performance to system. An adequate choice of this parameter gives improved result for which
the system is robustly stable.

4. Optimization Problems
In this section we show how the theoretical conditions can be casted into LMI-based optimization
problems to determine a suitable stabilizing gain K and a domain of attraction which ensure
that the state trajectory of the closed-loop system (6) starting from any initial functions φ(θ)
in De will remain within De for all t > 0.

The idea is to develop a methodology to estimate the largest possible domain of initial
conditions for which it can be ensured that the closed-loop system trajectories remain bounded.
As in [5], we impose the following conditions[

σ1I X̃

X̃T P̃

]
≥ 0,

[
σ2I X̃

X̃T Q̃

]
≥ 0,

[
σ3I X̃

X̃T R̃

]
≥ 0,

[
σ4I X̃

X̃T W̃

]
≥ 0 (22)

It follows that condition (14) is satisfied if the following LMI holds[
σ1 + hmσ2 +

h2m
2

σ3 + hmσ4

]
δ2 ≤ β−1 (23)

where δ2 = max(‖φ(θ)‖2c , ‖φ̇(θ)‖2c), X−1 = X̃ and Π
−1

= Π̃ with Π = P,Q,R,W and the
stability radius δ > 0 a scalar to be determined.

Therefore, let us construct a feasibility problem as follows

Minimize Trace

(
PP̃ +QQ̃+RR̃+WW̃ + (X +XT )(X̃ + X̃T )

)
subject to Π > 0, Π̃ > 0, β > 0, δ > 0, σi=1,...,4 > 0, (12),(13),(22),(23),[
P ∗
I P̃

]
≥ 0,

[
Q ∗
I Q̃

]
≥ 0,

[
R ∗
I R̃

]
≥ 0,

[
W ∗
I W̃

]
≥ 0,[

X +XT ∗
I X̃ + X̃T

]
≥ 0. (24)

The new LMIs problem can be solved by using the following like cone complementarity
algorithm
Step 1: Given hm, β, fix initial values α = α0 and choose a sufficiently large initial δ such that
there exits a feasible solution to LMI conditions in (24). Set δ0 = δ and α0 = α.

Step 2: Find a set of feasible matrices

(
Π, X, Π̃, X̃, σi=1,...,4

)
0
that satisfies (24).
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Step 3: Solve the following LMI minimization problem

Minimize Trace

(
PP̃0 +QQ̃0 +RR̃0 +WW̃0 + (X +XT )(X̃0 + X̃T

0 ) + P 0P̃ +Q0Q̃+R0R̃

+W 0W̃ + (X0 +XT
0 )(X̃ + X̃T )

)
subject to LMIs in (24)

Step 4: Substitute the new matrix variables from the previous step into (24). If the result is
feasible, then set δ0 = δ and α0 = α. If it is not feasible, then set the new matrices to be(
Π, X, Π̃, X̃, σi=1,...,4

)
0
and go to step 3.

5. Illustrative Examples
In this section we illustrate our methodology over three examples borrowed from [2, 4, 20].
Example 1 [2]. Consider the nominal system of (1), where

A =

[
0.5 −1
0.5 −0.5

]
, Ad =

[
0.6 0.4
0 −0.5

]
, B =

[
1
1

]
, u0 = 5, d = 0, C = 0, W = 0

We can apply the stability results presented in Theorem 3.1 with ΔA(t) = ΔAd(t) = ΔC(t) =
0. Taking β = 1, we obtain a stability radius δ = 271 when a tuning parameter is α = 143. For
the comparison with other approaches we give the Table 1

Table 1. Comparison of hm with obtained K.

Approach hm K

[1] 0.35 Not Reported
[15] 1.854 (−25.8809 − 4.9315)
[30] 2.248 Not Reported
[10] 2 (− 5.7702 − 0.9754)
[9] 2 (− 5.6104 − 0.9147)
Th. 3 [4] 1.854 (− 1.7008 0.2776)
[2] 1.854 (− 2.2346 0.0580)
Th. 3.1 3.262 (− 3.9263 − 2.5783)× 103

Note that as pointed in Section 2, the effective control signal applied to the system
is u(t) = sat(Kx(t)). in this case, u(t) is a scalar so we have u(t) = sat(Kx(t)) =
sign(Kx(t))min{u0, |Kx(t)|} and the amplitude limitation of the input is always satisfied.

From the numerical example it is clear that our approach is less conservative in stabilizing
the system with larger time-delay bound than those of [1, 15, 30, 10, 9, 4, 2].
Example 2 [4]. The system is described by (1) with

A =

[
1 1.5
0.3 −2

]
, Ad =

[
0 −1
0 0

]
, B =

[
10
1

]
, C = cI, u0 = 15, hm = 1, D = E0,1,2 = 0

Taking β = 1 and applying the proposed algorithm, we obtain a stability radius of δ = 344
and δ = 404. Their results are listed in Table 2 and Table 3 along with the results obtained by
Theorem 3.1 for α = 111 and α = 94, respectively.
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The domain of initial condition obtained for neutral system in which c = 0.2 and d = 0.1
is given by δ = 344, while for retarded system (i.e. c = 0), it is given by δ = 404. For the
comparison with other approaches, we give Table 2 for neutral system and Table 3 for time
delay system.

It is clear that the obtained δ is significantly larger than those obtained in [17, 16, 2, 1, 15, 4].
To see graphically the improvements of our approach, we represent the domains of attraction

of Table 2 and Table 3 in Figure 1 and Figure 2.

Table 2. Comparison of δ and K for c = 0.2 and d = 0.1.

Approach δ K

[17] 12.88 (−0.2780 − 0.1390)
[16] 70.74 (−0.1325 0.0153)
[2] 76.2262 (−0.2359 − 0.0453)
Th. 3.1 344 (−0.1032 − 0.0272)

Table 3. Comparison of δ and K for c = d = 0.

Approach δ K

[1] 67.0618 Not Reported
[15] 79.43 (−7.9130 0.7323)
[16] 83.55 (−0.1950 0.0649)
[2] 84.6074 (−0.2223 − 0.0246)
Th. 3 [4] 106.2856 (−0.6646 − 0.0239)
Th. 3.1 404 (−0.1013 − 0.0495)
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Figure 1. The domain of attrac-
tion in Table 2.
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Figure 2. The domain of attrac-
tion in Table 3.

Example 3 In this example, we consider the linearized model of the Mach Number in a
Wind Tunnel described by (17)-(18), all the numerical values of the parameters are borrowed
from [22]. The same parameters have been used in [20] and are as follows

1

a
= 1.964s, k = −0.0117deg−1, ξ = 0.8 andw = 6rad/s
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Using Theorem 3.2, letting, u0 = 1 and d = 0. The following state feedback control law

K =
(
0.0000 0.7308 0.1398

)
stabilizes the system (18), hence the system is stabilizable for any time delay less than the upper
bound 26, and the stability radius is 389 where α = 2 and β = 1. For comparison with the
results of others papers see Table 4.

Table 4. Comparison of hm.

method [22] [20] this paper

hm 0.33 0.9685 26

From Table 4, the proposed method gives much larger time delay bound than the results of
[22, 20].

On other hand, the values of the control parameters are adjusted to 0.75, 1 and 0.5,
respectively. Thus, our results are less conservative than those of [21].
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Figure 3. The response of the
state variables using Runge-Kutta
Method.

Time[s]
0 1 2 3 4 5 6 7 8 9 10

-2

-1

0

1

2

3

4

u(t)

Figure 4. The response of the
control input variable using Runge-
Kutta Method.

Note that even though the control input is initially saturated, the states, in due course, are
driven to the origin with x0(t) = [−5 5 − 5]T . The numerical simulation presented in this
example shows that very good transient responses can be obtained by using control law compared
to [21], which can be implemented in a controlling microprocessor as a simple feedback, using
state variable x(t) and delayed state variable x(t − τ(t)) and control with a saturation at its
input.

6. Conclusions
We have presented a methodology for robust stabilization of uncertain neutral time-delay system
with saturating actuator, with the derived conditions given as LMIs that depend of the maximum
value of the delay. These conditions then guarantee the stability of the closed loop system when
the initial states are taken within a calculated region of attraction. The proposed conditions
have being shown to be less conservative than those previously proposed in the literature by
numerical examples, that have also illustrated the feasibility of the proposed approach.

Since the class of systems investigated in this paper appear in many process control
applications, one can expect that the feedback design method presented here may have a wide
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range of applicability. The results were applied to the feedback control of Mach Number in a
Wind Tunnel for illustration.
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