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Abstract. An improved linear time varying model predictive control for steering control of
autonomous vehicle running on slippery road is presented. Control strategy is designed such
that the vehicle will follow the predefined trajectory with highest possible entry speed. In linear
time varying model predictive control, nonlinear vehicle model is successively linearized at each
sampling instant. This linear time varying model is used to design MPC which will predict
the future horizon. By incorporating predicted input horizon in each successive linearization
the effectiveness of controller has been improved. The tracking performance using steering
with front wheel and braking at four wheels are presented to illustrate the effectiveness of the
proposed method.

1. Introduction
In this paper, the problem being addressed is the steering control of autonomous vehicle for
effective tracking of predefined trajectory. A double lane change scenario on slippery road is
considered as trajectory. The assumption is that a trajectory planning system is available for
designing the path to be followed. The problem involves yaw and lateral vehicle dynamics
stabilization via steering control while tracking a desired path as close as possible while fulfilling
the physical constraints. In [1][2][3][4] this problem has been addressed using front wheel steering
control where the authors rely on linear time varying model predictive control (LTVMPC) for
the controller design. In [4] the authors have improved the design by incorporating braking at
four wheels to the steering control. In the work reported in this paper this design is further
improved by modifying the linearization process involved in controller design.

Model predictive control (MPC) qualifies to be an adequate control strategy by virtue of its
capacity to predict the future states and to handle constraints. In MPC a model of the plant is
used to predict the future horizon of states of system. Based on this prediction horizon at each
sampling time t, a performance index is optimized under operating constraints. Optimization
gives sequence of future input moves in order to best follow a given trajectory. The first of
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the optimal moves is the control action applied to the plant at time t. At time t+1, a new
optimization is defined and solved over a shifted prediction horizon [5] [6].

The nonlinear vehicle model discussed in [1] is being considered for the LTVMPC design. For
nonlinear model, predictions of horizon based on nonlinear equations are very complex involving
difficult computation. For such systems a sub-optimal controller using successive linearization
is often used. In [1][2][3] the authors depend on such a methodology for controller design using
front wheel steering.

The reported LTVMPC [3], uses a linearized state space model to predict the future
horizon. For a time t, predictions are calculated using linearized model obtained by successive
linearization at each sampling instant. This model is then used for the calculation of next input
horizon. In next sampling instant this procedure of modeling and computing control horizon
is repeated. In the methodology used in [3], at every instant successive linearization makes
use of the previous input. Since predicted input is available at every instant, the accuracy of
linearization process can be improved by making use of this predicted value rather than previous
input as this will reduce the approximation involved in jacobian matrix of linearized model.
This improvisation in successive linearization of system leads to better tracking performance
compared to the methodology in [3]. This has been verified by applying this proposed method
to the same autonomous vehicle being used in [3] [4]

The control inputs being used are front steering angle and braking at each wheel. Steering
angle and its rate of change has physical limitations which has been taken into consideration in
design. Also brakes are being applied within limits so that stability is maintained.

The paper is structured as follows: Section II describes the system model which includes
vehicle model and tyre model in detail. Since the proposed improved LTVMPC method relies
on LTVMPC methodology reported in [3], section III describes this methodology first and then
deals with the proposed method. Simulation results are presented in section IV to illustrate the
effectiveness of this method. Section V concludes the paper.

2. System model
The vehicle dynamic model as given in [1][2][3][4] is presented in this section. Fig 1 shows
schematic of four wheel autonomous vehicle.

The two front and two rear wheels of car are denoted by ? ∈ {f, r} and the left and right
wheels by • ∈ {l, r}. Fl?,•, Fc?,• denotes longitudinal and lateral tire forces receptively. Fx?,•,
Fy?,• are forces in car body frame, Fz is normal tire load. I denotes the inertia of car, a, b
are distance of front and rear wheels from center of gravity of car, c is the distance of vehicle
longitudinal axis from wheels, g is gravitational constant, m is car mass, r is wheel radius, ψ is
heading angle, X,Y are absolute car position coordinates (global reference), s?,• are slip ratios
for four wheels, ẋ is the longitudinal speed of vehicle, ẏ is the lateral speed of vehicle, α?,• are
slip angles at four wheels, δ?,• are wheel steering angle at each wheel and µ?,• is road friction
coefficient at the four wheels.

2.1. Vehicle model
Assuming the mass of vehicle to be constant, the normal tyre force (i.e. vertical force on tire)
Fz is constant, the dynamics of four wheel model as shown in fig 1 is represented by following
equations :

mẍ = mẏψ̇ + Fxf,l + Fxf,r + Fxr,l + Fxr,r (1a)

mÿ = −mẋψ̇ + Fyf,l + Fyf,r + Fyr,l + Fyr,r (1b)

Iψ̈ = a(Fyf,l + Fyf,r)− b(Fyr,l + Fyr,r)

+c(−Fxf,l + Fxf,r − Fxr,l + Fxr,r) (1c)
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Figure 1: Vehicle model

The equations of motion in an absolute inertial frame are :

Ẋ = ẋ cosψ − ẏ sinψ (2a)

Ẏ = ẋ sinψ + ẏ cosψ (2b)

Longitudinal and lateral tire forces lead to the following forces acting on the center of gravity :

Fy?,• = Fl?,• sin δ?,• + Fc?,• cos δ?,• (3a)

Fx?,• = Fl?,• cos δ?,• − Fc?,• sin δ?,• (3b)

Tire forces for each tire are given by [7] :

Fl?,• = fl(α?,•, s?,•, µ?,•, Fz) (4a)

Fc?,• = fc(α?,•, s?,•, µ?,•, Fz) (4b)

The tire slip angle represents the angle between the wheel velocity and the direction of the wheel
itself and can be expressed as :

α?,• = tan−1 vc?,•
vl?,•

(5)

The slip ratio formula is defined as :

s =
rω

vl
− 1, if vl > rω, v 6= 0 for braking (6a)

s = 1− vl
rω
, if vl < rω, ω 6= 0 for driving (6b)

The lateral (or cornering) and longitudinal wheel velocities are :

vl?,• = vy?,• sin δ?,• + vx?,• cos δ?,• (7a)

vc?,• = vy?,• cos δ?,• − vx?,• sin δ?,• (7b)

13th European Workshop on Advanced Control and Diagnosis (ACD 2016)                                     IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 783 (2017) 012028          doi:10.1088/1742-6596/783/1/012028

3



and

vyf,l = ẏ + aψ̇ vxf,l = ẋ− cψ̇ (8a)

vyf,r = ẏ + aψ̇ vxf,l = ẋ+ cψ̇ (8b)

vyr,l = ẏ − bψ̇ vxf,l = ẋ− cψ̇ (8c)

vyr,r = ẏ − bψ̇ vxf,l = ẋ+ cψ̇ (8d)

The parameter µ?,• denotes the road frictional coefficients and are assumed equal for all the
four wheels. Fz is the total vertical load of the vehicle and is distributed between the front and
rear wheels based on the geometry of the car model (described by the parameters a and b) is
given by :

Fzf =
bmg

2(a+ b)
, Fzr =

amg

2(a+ b)
(9)

Equations (1)-(9) describes the nonlinear vehicle dynamics. For simplicity of representation this
is expressed as :

dξ

dt
= fs(t),µ(t)(ξ(t), u(t)) (10)

The state and input vectors are given by,

ξ = [ẏ ẋ ψ ψ̇ Y X]
T

(11)

u = [δfl δfr δrl δrr sfl sfr srl srr]
T

(12)

The front wheel steering model is obtained by letting δfl = δfr = δf and δrl = δrr = δr = 0 .

2.2. Tyre model

(a) longitudinal force (b) lateral force

Figure 2: Longitudinal and lateral tire forces with different frictional coefficient (µ) values. [7]

The model for tyre tractive and cornering forces presented in [3] are based on magic formula
described by Pacejka model [7]. The same tyre model has been used in this paper.

The Pacejka tire model calculates lateral force and longitudinal force based on percent lon-
gitudinal slip (slip ratio), slip angle, frictional coefficient and vertical normal force. Figure 2
shows the longitudinal and lateral forces versus slip ratio and slip angle respectively for constant
friction coefficient and vertical load.

13th European Workshop on Advanced Control and Diagnosis (ACD 2016)                                     IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 783 (2017) 012028          doi:10.1088/1742-6596/783/1/012028

4



3. Controller design
In MPC at each sampling time, an optimal control problem is solved over a finite horizon. The
optimal control problem minimizes the performance index, subject to operating constraints. The
resulting optimal command signal is applied to the vehicle system for that sampling interval.
At the next instant, a new optimal control problem is solved for new measurements of the state
over the shifted horizon. MPC is a step by step procedure where design ensures that states
and control input are satisfying their constraints. As the problem being considered is steering
control with braking and all outputs are to be tracked output constraints does not figure in
problem. The continuous time model given in eq (10) is discretized with Ts as sampling time.
This discretized model is represented by :

ξ(k + 1) = fs(k),µ(k)(ξ(k),∆u(k)) (13)

u(k) = u(k − 1) + ∆u(k) (14)

3.1. LTV model
Controller design for nonlinear systems are made simple by linearizing the system model around
its operating point. By successive linearization over each shifting operating point the accuracy
of the MPC design for autonomous vehicle can be improved. Such a model is referred to as
linear time varying (LTV) model.

With the initial state ξ0 ∈ X and initial control input u0 ∈ U , the one step ahead dynamics
of system is :

ξ(k + 1) = f(k, ξ̂0(k),∆u(k)) (15)

u(0) = u0

ξ̂(0) = ξ0

Linearization of eq (13) about its initial condition will lead to :

ξ(k + 1) = Ak,0ξ(k) +Bk,0u(k) +Bwk,0W (k) (16)

where,

Ak,0 =
∂f

∂ξ

∣∣∣∣
ξ̂0(k),u0

(17a)

Bk,0 =
∂f

∂u

∣∣∣∣
ξ̂0(k),u0

(17b)

δξ(k) = ξ(k)− ξ̂0(k) (17c)

Bw is the input matrix for disturbance and W (k) is the disturbance to system.

3.2. LTVMPC controller
The MPC designed for linear model in eq (16) is referred to as LTVMPC [1] [2] [3] [4]. The fact
that, the model in eq (16) is recalculated at every sampling instant justifies the term LTV. At
each sampling instant t, the system dynamics can be represented as :

ξ(k + 1) = Ak,tξ(k) +Bk,tu(k) +Bwk,0W (k) (18)

The matrices Ak,t, Bk,t are as defined in eq (17), where fixed initial index of zero is replaced by
current time t.

Ak,t =
∂f

∂ξ

∣∣∣∣
ξ̂(k,t),ut

Bk,t =
∂f

∂u

∣∣∣∣
ξ̂(k,t),ut

(19)
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and,

ξ̂(k + 1, t) = f(ξ̂(k, t),∆ut, t), (20a)

k = t, t+ 1, ...t+N − 1

ξ̂(t, t) = ξt (20b)

ut = ut−1 (20c)

For the above system, control horizon is generated by minimizing cost function JN given by :

JN (ξt,∆Ut,Ξreft) =

ny∑
i=1

‖(ηt+i,t − ηreft+i,t)‖2Q +

nu−1∑
i=0

‖∆ut+i,t‖2R

+

nu−1∑
i=0

‖ut+i,t‖2λ + ρε (21)

where η = [ velocity ψ̇ ψ Y ] are the output variables of the system and ηref denote
the corresponding reference signal. nu is size of input prediction horizon and ny is size of output
prediction horizon. ∆Ut = [ ∆ut ∆ut+1 . . ∆ut+nu−1 ] and
Ξref (t) = [ηref (t+ 1) ηref (t+ 2) . ηref (t+ ny)] are the sequence of input and reference

trajectory over time horizon nu and ny respectively.
Eq (21) indicates that the cost function involves trajectory tracking with weight Q while

minimizing both control effort and its increment with weights λ and R respectively.
At each sampling instant t, the cost function given in eq (21) is minimized. The optimization

problem can be stated as follows :

min
∆Ut

J(ξt,∆Ut,Ξreft)

s.t. ξk+1,t = Ak,tξk,t +Bk,tuk,t + dk,t

αk,t = Ctξk,t +Dtuk,t
∆umin ≤ ∆uk,t ≤ ∆umax

umin ≤ uk,t ≤ umax

uk,t = uk−1,t + ∆uk,t

αmin − ε ≤ αk,t ≤ αmax + ε (22)

In eq (22) α is the slip angle which is the constrained output. The constraint on α is soft
constraint defined using slack variable ε [9] [10]. The soft constraint are those which can be
violated. However the weight factor on the violation ensures that violation penalizes the cost
function as indicated by the term ρξ in eq (21).

The optimization problem stated in eq (22) can be reformulated as a quadratic problem (QP).
The details of quadratic programming and MPC control law has been discussed in [5]-[6]. The
sequence of optimal input deviations are computed at every sampling time t by solving (22).
The optimal control horizon is

∆U∗
t,t = [ ∆u∗t,t ∆u∗t+1,t . . . ∆u∗t+nu−1,t ] (23)

Only the first deviation value is used to obtain optimal control at instant t

ut = ut−1 + ∆u∗t,t (24)

ût+1 = ut + ∆u∗t+1,t (25)
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As already explained, at each sampling time t, the linear model is computed by linearization of
(13) around state ξt and input ut.

In [1][3][4] for linearization the input used is ut = ut−1 as indicated by (20c), which is not
correct in the strict sense. Since MPC is capable of generating the predicted input at instant t
which is a better approximation to the actual ut than ut−1, the linearized model with predicted
ût will reduce the error involved in the approximation. For incorporating this improvement,
ut−1 in (20c) is replaced by ût computed as follows:

ût = ut−1 + ∆u∗t,t−1 (26)

As ideal MPC control law always follows the tail of previous input horizon, the above predicted
control is a logical improvisation to equating ut to ut−1.

In LTV model, over a prediction horizon state space model is assumed to be constant. At
next sampling instant (t + 1), the horizon moves one step and the system is linearized and
optimization problem defined by eq (22) is solved based on the state ξt+1 and input ût+1.

Use of eq (20c) rather than eq (26) in each successive linearization steps is bound to add to
the tracking error because of the cumulative effect of the approximation error.

The improvised model which makes use of eq (26) is seen to fetch better tracking. This is
presented in simulation results.

4. Simulation results
As in [1][2][3][4], it is assumed that vehicle is entering a double lane change maneuver on very
low frictional road with a given initial speed. The control input is the steering angle and the
goal is to follow the trajectory as close as possible by minimizing the vehicle deviation from the
target path with highest possible entry speed. In [1][2] only steering control has been used for
trajectory tracking. In [3][4] both steering and braking control has been used for this purpose.
The simulation results presented in this section are based on both steering and braking. As in
[4] a vehicle speed of 21m/sec is considered for simulation. As in [1][2][3][4] The reference model
for MPC used is same as the system model at starting point. The simulation results for the
improved LTVMPC are in accordance with the expected improvement in tracking error.

The control inputs are the front wheel steering angle and slip ratios at the four wheels.
Following has been used for tuning of controller :
• Sample time T = 0.05 sec.
• Constraints on steering input and input increments : δfmin = −10◦, δfmax = 10◦,∆δfmin =
−0.85◦,∆δfmax = 0.85◦

• The upper and lower bounds on four slip ratio are 0% and -2.7% respectively. The upper and
lower bounds on braking rate are 10 % and -10% respectively.
• Weights on tracking errors: Qẋ = 0.5, Qψ = 12000, Qψ̇ = 3000, QY = 600
• Weights on input rates: Rδf = 5000, Rs?,• = 50
• Weights on inputs: λδf = 1000, λs?,• = 16
• Horizon ny = 21, nu = 10
• Constraints on the tyre slip angles: αmin = −3◦, αmax = 3◦

• Weight on soft constraint ρ = 28
• Entry velocity of vehicle v = 21m/sec
• Road friction µ?,• = 0.3

In figures 3 - 5 simulation results obtained by using the LTVMPC design as reported in [4]
are shown. The entry speed of 21m/sec is reduced to 18.75m/sec at the end of double lane
change as seen in fig 3(a). The tracking performance with LTVMPC for ψ, Y , ψ̇ are shown in
fig 3(b), 3(c), 3(d) respectively.
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(a) velocity (b) tracking of ψ

(c) tracking of Y (d) tracking of ψ̇

Figure 3: Tracking with LTVMPC.

(a) input δf (b) input ∆δf

Figure 4: Input and input increment of front wheel steering angle with LTVMPC.
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(a) input sfl (b) input sfr

(c) input srl (d) input srr

Figure 5: Slip ratios at four wheels with LTVMPC.

Fig 4 shows the steering angle and increments of steering angle for LTVMPC. Both these
values are bounded within the constraints.

Fig 5 shows the slip ratio at the four wheels for LTVMPC. It can be seen that the slip ratio
of right side front and rear wheels are similar to each other. Also for left side front and rear slip
ratio are similar. More braking is applied to right side wheels. This input provides differential
braking which helps to turn right. This shows that braking is not only applied to reduce speed
of vehicle but also to help the steering.

In figures 6 - 8 simulation results of the proposed improved LTVMPC controller are shown.
The entry speed of 21m/sec is reduced to 19.10m/sec which is an improvisation on the achieved
speed of 18.75m/sec with LTVMPC. Comparison of the velocity profile in fig 3(a) and fig 6(a)
shows an improvement in velocity profile for the proposed method towards the latter half of lane
change where it is seen that velocity profile continuously maintains a higher velocity than the
velocity observed in fig 3(a).

The tracking performance with improved LTVMPC for ψ, Y , ψ̇ are shown in fig 6(b), 6(c),
6(d) respectively. An improvement in tracking of Y for improved LTVMPC can be seen in fig
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(a) velocity (b) tracking of ψ

(c) tracking of Y (d) tracking of ψ̇

Figure 6: Tracking with improved LTVMPC.

(a) input δf (b) input ∆δf

Figure 7: Input and input increment of front wheel steering angle with improved LTVMPC.
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(a) input sfl (b) input sfr

(c) input srl (d) input srr

Figure 8: Slip ratios at four wheels with improved LTVMPC.

6(c). Also improved LTVMPC reaches steady state faster than that of LTVMPC which can be
seen by comparing fig 6(b) and 6(d) with 3(b) and 3(d) respectively.

Fig 7 shows the steering angle and its increment for improved LTVMPC. Both of these values
are within the constraints. By comparing input steering angle for LTVMPC shown in fig 4(a)
with the input steering angle for improved LTVMPC in fig 7(a), it can be seen that input for
LTVMPC reaches the boundary value of 10◦ and for improved LTVMPC this value is well within
its bounds.

Fig 8 shows the slip ratio at four wheels with the improved LTVMPC. As with the LTVMPC
here also the braking shown is differential braking where more brakes has been applied to right
wheels so that vehicle will turn right. Comparison of fig 8 with fig 5 clearly shows that the
braking applied with the improved controller is less than the braking with LTVMPC. This is
in accordance with the velocity profiles in fig 3(a) and fig 6(a) where the effect of less braking
as in fig 8 is reflected on the higher velocity being maintained in fig 6(a) in comparison to the
velocity observed in fig 3(a).

The effect of the improved LTVMPC on its tracking performance will be directly reflected in
the rms values of error. This is shown in table 1. In the table, ψ is in degree, ψ̇ is in degree/sec
and Y is in meter.
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Table 1: Comparison of improved LTVMPC with LTVMPC

Controller eavg emin emax erms

LTVMPC

ψ 1.0836 −3.6500 16.2548 4.6595

ψ̇ −1.7172 −21.3342 10.74186 5.9206

Y −0.3821 −3.5790 0.6580 0.9294

Improved

LTVMPC

ψ 0.7907 −2.4357 13.0706 3.1355

ψ̇ −1.4964 −19.0279 4.1650 4.7914

Y −0.2862 −3.0738 0.2113 0.7114

From comparison it is seen that rms value of error is substantially less with the improved
LTVMPC for all the 3 output variables; this reduction in error being 32.70%, 17.07% and 23.45%
for ψ, ψ̇ and Y respectively for the entry speed of 21m/sec.

5. Conclusion
An improved linear time varying model predictive control (LTVMPC) for combined front wheel
steering and four wheel braking of autonomous vehicle has been discussed. The performance
of the controller for double lane change trajectory on low frictional road has been presented.
The LTVMPC controller as reported earlier in literature has been modified by improvising on
the linearization of the nonlinear model for the autonomous vehicle which is used for the design
of steering control with braking. The accuracy in the linearization is directly reflected on the
tracking performance with high entry speed during double lane change. Simulation results are
presented to show the efficacy of the methodology. Comparison of the simulation results from
LTVMPC and improved LTVMPC shows that the proposed methodology leads to better traits
in tracking performance.
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