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Abstract. This paper presents the design of Low Earth Orbit (LEO) micro-satellite attitude 
controller using reaction wheels, and under actuator faults. Firstly, a backstepping controller is 
developed when the actuator is fault-free. Then, a fault tolerant controller is designed to 
compensate the actuator fault. Two types of this latter are considered (additive and 
multiplicative faults). The presented control strategy is based on adaptive backstepping 
technique. The simulation results clearly demonstrate the effectiveness of the presented 
technique. 

1.  Introduction 
The attitude is the orientation of satellite in the space. In absence of control, it evolves naturally under 
effect of external disturbances. The attitude control has the role to compensate this disturbing torques.  
The attitude control is a very important field of research in space technology. It attracted much 
attention in the recent years because of many types of space missions. 
From automatic point of view, the satellite is a nonlinear dynamic system, it is highly coupled. 
Therefore, the design of the attitude controllers is usually difficult. Various nonlinear controllers have 
been proposed to solve this problem. These controllers include sliding mode control [1-2], fuzzy 
control [3], backstepping control and feedback control [4]. Among these techniques, backstepping 
control is a recursive method, it is based on Lyapunov theory which ensures the stabilization of each 
step of synthesis.  
The backstepping has been very useful in the space field over the past years. In [5], this technique was 
used with the inverse optimal control to stabilize spacecraft attitude. In [6], the backstepping was 
based on similar skew-symmetric structure. [7] presented control by integrator backstepping with 
internal stabilization. All these controllers are based on the knowledge of the system parameters. 
However, if faults appear in satellite subsystems such as actuators, the control laws [5-7] induce no 
desired behaviours, and the consequences of these faults can be catastrophic. Therefore, it is important 
to develop other control strategies that can tolerate faults.   
In [8], a combination between backstepping control, adaptive control and new matrix product (which 
called the semitensor product) was used to control the spacecraft attitude with unknown external 
disturbances, but no faults were present. In [9-11] adaptive control was developed in the presence of 
unknown inertia parameters and also with no faults. In [12] fault tolerant attitude control was designed 
using adaptive neural network.  
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In this paper, a controller design for Low Earth Orbit microsatellite is presented in the presence of the 
combination of two actuator faults: additive and multiplicative faults. The presented controller is 
developed using the adaptive backstepping technique, which is based on adaptive design of Lyapunov.  
The paper is organized as follows. Section 2 presents the dynamic and kinematic models used for the 
satellite. Section 3 presents the controllability test of our system. In the section 4, 5, and 6, we describe 
the design of the control laws which are presented in this work. In next section, we present the 
simulation results. Finally, the conclusion of this paper is presented in section 8. 

2.  Spacecraft attitude model 
The dynamics of the spacecraft in inertial space governed by Euler’s equations of motion can be 
expressed as follows in vector form as [13-14], ۷૑ሶ ۷ܛ = ۱୥୥ + ۱ୣ୶୲ + ۷૑۷ܛ × ൫۷૑۷ܛ + ൯ܐ − ሶܐ                                                                                            (1) 
 
where ૑ୱ୍,	۷ , ۱୥୥ and ۱ୣ୶୲	are respectively the inertial referenced body angular velocity vector, 
moment of inertia of spacecraft, gravity gradient torque vector, and external disturbance torque vector. 
The expression of the gravity gradient vector in body coordinate is expressed as, C୥୥୶ = 3ω଴ଶൣ൫I୸୸ − I୷୷൯AଶଷAଷଷ + I୷୶AଵଷAଷଷ + I୷୸Aଷଷଶ − I୸୶AଵଷAଶଷ − I୸୷Aଶଷଶ ൧ (2. a) C୥୥୷ = 3ω଴ଶൣ(I୶୶ − I୸୸)AଵଷAଷଷ − I୶୷AଶଷAଷଷ − I୶୸Aଷଷଶ + I୸୶Aଵଷଶ + I୸୷AଵଷAଶଷ൧ (2. b) C୥୥୸ = 3ω଴ଶൣ൫I୷୷ − I୶୶൯AଵଷAଶଷ + I୶୷Aଶଷଶ + I୶୸AଶଷAଷଷ − I୷୶Aଵଷଶ − I୷୸AଵଷAଷଷ൧ (2. c) 
where,  ω଴ mean orbital angular velocity of the satellite; A୧୨ attitude matrix elements. 

The kinematic quaternion is expressed as, 

ሶܙ = 12 	ષ	ܙ = 12઩(ܙ)૑ܗܛ 
(3) 

where, 

ષ = ൦ 0 				ω୭୸ −ω୭୷−ω୭୸ 0 			ω୭୶			ω୭୷−ω୭୶ 	−ω୭୶−ω୭୷ 0−ω୭୸			
		ω୭୶	ω୭୷	ω୭୸0 ൪  (4) 

and,  ઩(ܙ) = ቎				qସ −qଷ qଶ				qଷ 			qସ −qଵ−qଶ−qଵ 			qଵ−qଶ qସ−qଷ቏ (5) 
૑ܗܛ = [ω୭୶ ω୭୷ 	ω୭୸]୘:	body angular velocity vector referenced to orbital coordinates. 
The angular body rates referenced to the orbit coordinates can be obtained from the inertial referenced 
body rates by using the transformation matrix A as [13], ૑ܗܛ = ૑۷ܛ −  ૑૙ (6)ۯ
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From equation (1) and equation (3), the satellite mathematical model can be written as, ܠሶ = ,ܠ)܎ (ܐ + ܡ (7.1)                                                                                                                               ܃	۰ =   (7.2)                                                                                                                                               ܠ	۶
where,  

,ܠ)܎ (ܐ =
ێێۏ
ێێێ
ۍێێ

૙. ૞(૑ܙܢܗ૛ − ૑ܙܡܗ૜ + ૑ܙܠܗ૝)૙. ૞(−૑ܙܢܗ૚ + ૑ܙܠܗ૜ + ૑ܙܡܗ૝)૙. ૞(૑ܙܡܗ૚ − ૑ܙܠܗ૛ + ૑ܙܢܗ૝)૙. ૞(−૑ܙܠܗ૚ − ૑ܙܡܗ૛ − ૑ܙܢܗ૜)۷ିܠ ૚	(۱ܠ − ൫۷ܢ − ܢ૑ܡ൯૑ܡ۷ − ૑ܢܐܡ + ૑ܡ۷ି(ܡܐܢ ૚(۱ܡ − ܠ۷) − ܢ૑ܠ૑(ܢ۷ + ૑ܢܐܠ − ૑ܡ۷ି(ܠܐܢ ૚(۱ܢ − ൫۷ܡ − ܡ૑ܠ൯૑ܠ۷ − ૑ܡܐܠ + ૑ۑۑے(ܠܐܡ
ۑۑۑ
 (8)																																																																															ېۑۑ

ܠ = [qଵ, qଶ, qଷ, qସ, ω୶, ω୷, ω୸]୘ state vector;                                                                                                       ۷ = [I୶ I୷ I୸]	moment of inertia of spacecraft; ૑۰۷ = T
zyx ][ ωωω angular velocity vector in the inertial frame; ܙ = [qଵqଶqଷqସ]	quaternion; ܐ = [h୶ h୷ h୸]୘angular moment vector; ۱ܜܠ܍ = [C୶ C୷ C୸]୘external disturbance torque vector; ۰ = ൣ૙૝×૜	۷૜×૜	൧୘	control matrix; ܃ = ሶܐ− 	control input torque;  

It assumed that the quaternion measurements are directly available		۶ = [۷ସ×ସ		૙ସ×ଷ]. 
3.  Controllability test 
The controllability concept is related to dynamic systems. It has a fundamental importance when 
studying attitude control algorithms that we will presented in the following sections. For that reason 
we introduce this concept in what follows. 
The controllability test is based on the rank test of the controllability matrix	۱۽ which is defined as, ۱۽ = ൣ۰			۴۰			۴૛۰			۴૜۰			۴૝۰			۴૞۰			۴૟۰൧                                                                                       (9) 
where, 

۴ = ૒܎૒ܠ 																												۰ =
ێێۏ
ێێێ
1000000ۍ

0100000
ۑۑے0010000
ۑۑۑ
 (10)																																																																																																										ې

The system is controllable if the rank of the matrix ۱۽ is equal to seven. 
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Figure 1 shows that the rank of the controllability matrix is equal to seven. Therefore, our system is 
controllable. 
 
4.  Backstepping control design 
In this section, backstepping control law is developed. This technique is inspired by [15]. 
The backstepping algorithm is described in two steps as follow. 

4.1.  Step 1 
We define the first and the second variable of backstepping ܢଵ = ଵܠ = ୣܙ = ଶܢ (11) ܙ	ୡܙ = ଶܠ − હଵ (12) 
where, ܠଶ = ૑ୱ୭; હଵ is a virtual control law. 
The time derivative of ܢଵ is expressed as, 

ሶଵܢ = ሶܠ ଵ = ሶܙ ୣ = 	ୡܙ ൬12઩(ܙ)૑ୱ୭൰ (13) 
The first Lyapunov function is defined as, Vଵ(ܢଵ) =  ଵ                                                                             (14)ܢ	ଵ୘ܢ
Its time derivative is expressed as, Vሶଵ = ሶଵܢଵ୘ܢ2 = ଶܢ(ܙ)ଵ୘۵ܢ +  હଵ (15)(ܙ)ଵ୘۵ܢ
where, ۵(ܙ) =  (16) (ܙ)઩		ୡܙ
To make Vሶଵ negative,	હଵ is chosen as, હଵ =  ଵ  (17)ܢ୘(ܙ)ଵ۵ܓ−
 

 

Figure 1.  Rank of the controllability matrix. 
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where, ܓଵ: is a positive gain matrix. 

The time derivative of		Vଵ becomes Vሶଵ = ଵܢ୘(ܙ)ଵ۵ܓ(ܙ)ଵ୘۵ܢ− +  ଶ (18)ܢ(ܙ)ଵ୘۵ܢ
The term ܢଵ୘۵(ܙ)ܢଶ will be eliminated in the next step. 

4.2.  Step 2 
The time derivative of	ܢଶ is expressed as, ܢሶଶ = ૑ሶ ୱ୭ − હሶ ଵ (19) 
where,  ૑ୱ୭ = ૑ୱ୍ −  ૑଴ (20)ۯ
We replace the equation (20) in (19), we obtain ܢሶଶ = ૑ሶ ୱ୍ − ሶۯ ૑଴ − હሶ ଵ 		 (21) 
Iܢሶଶ = ۷૑ሶ ୱ୍ − ሶۯ۷ ૑଴ − ۷હሶ ଵ 		 (22) 
The second Lyapunov function is defined as, 

Vଶ(ܢଵ, (ଶܢ = Vଵ(ܢଵ) + 12  ଶ (23)ܢ	ଶ୘۷ܢ
 

 

Its time derivative is expressed as, Vሶଶ = Vሶଵ + ሶଶ (24) Vሶଶܢ	ଶ୘۷ܢ = ଵܢ୘(ܙ)ଵ۵ܓ(ܙ)ଵ୘۵ܢ− + ଶ୘ൣ൫۱୥୥ܢ+ ଶܢ(ܙ)ଵ୘۵ܢ + ۱ୣ୶୲ − ૑ୱ୍ ⨯ ൫۷૑ୱ୍ + ൯ܐ − ሶܐ ൯ − ሶۯ۷ ૑଴ − ۷હሶ ଵ൧ 																													 (25) 
To make Vሶଶ negative, the control law ܐሶ 	is chosen as, ܐሶ = ଶܢଶܓ + ଵܢ୘(ܙ)۵ + ቀ۱୥୥ + ۱ୣ୶୲ − ૑ୱ୍ ⨯ ൫۷૑ୱ୍ + ൯ቁܐ − ሶۯ۷ ૑଴ − ۷હሶ ଵ 																														 (26) 
5.  Adaptive control based on Lyapunov theory 
The adaptive design of Lyapunov is presented in this section as an introduction of the adaptive 
backstepping method.   
Consider the following nonlinear system ܠሶ = ܝ + ૎(ܠ)୘ર (27) 
where, ર is a vector of unknown parameters. 
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We seek to find the control law ܠ)ܝ, ર)	which ensures the stability of the system (27). Therefore, we 
choose the following Lyapunov function  

Vଵ(ܠ) = 12  ܠ	୘ܠ
(28) 

which is definite positive, its derivative is expressed as, Vሶଵ = ሶܠ୘ܠ = ܝ]୘ܠ + ૎(ܠ)୘ર] (29) 
The control law is chosen as, ܠ)ܝ, ર) = −૎(ܠ)୘ર −  (30) ܠଵܓ
where, ܓଵ > ૙ 
Therefore, two cases arise: 

• ર is known: the control law (30) can be realized, which makes the system (25) stable.  
• ર is unknown : the controller law (30) cannot be realized. We propose to replace it by its 

equivalent	ર෡ ܝ  . = −૎(ܠ)୘	ર෡ −  (31) ܠଵܓ
The derivative of the Lyapunov function will be expressed as, Vሶଵ = ܠଵܓ−୘ൣܠ + ૎(ܠ)୘ ર෩൧	=	−ܠ୘ܓଵܠ + ୘(ܠ)୘૎ܠ ર෩ (32) 
where, ર෩ represents the estimation error ൫ર − ર෡൯. 
This expression contains an unknown term	ર෩ , its sign is indefinite, and no conclusion can be drawn for 
the stability of the system. Therefore, we define a new Lyapunov function by adding to the initial 
function (28) a quadratic term according to the estimation error ર෩. 

Vଶ൫ܠ, ર෩൯ = 12 ܠ	୘ܠ + 12ર෩୘	ડିଵ	ર෩ 
(33) 

where, ડ is a gain matrix (definite positive) which represents the adaptation gain. 
The derivative of this function becomes: Vሶଶ = ሶܠ୘ܠ + ર෩୘	ડିଵર෩ሶ = ܠଵܓ୘ܠ− + ર෩୘ ડିଵ ቀર෩ሶ + ૌቁ (34) 
where, ૌ = ડ૎(ܠ)	(35) ܠ 
This derivative remains always indefinite, but this time the choice of the update law can cancel the 
second term of the equation. ર෡ሶ = −ર෩ሶ = −ડ૎(ܠ)	(36) ܠ 
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6.  Fault tolerant adaptive backstepping control design 
The adaptive backstepping is designed from the fusion of the adaptive design of Lyapunov presented 
in section (5) and the no adaptive backstepping technique presented in section (4). The direct 
combination of these two methods gives a triplet (Lyapunov function, control law, adaptation law). 
Figure 2 presents the adaptive backstepping schematic diagram. 
 

     

 
 

Figure 2. Adaptive backstepping schematic diagram. 
 
This technique is used to develop a controller which can tolerate actuator faults. The design of this 
controller is described as follow [16],  
In the presence of actuator faults, the dynamic equation model is rewritten as, 

 ۷૑ሶ ۷ܛ = ۱୥୥ + ۱ୣ୶୲ + ۷૑۷ܛ × ൫۷૑۷ܛ + ൯ܐ − ൫܎୫ܐሶ +  ୟ൯܎
where, ܎ୟ : additive fault; ܎୫ : multiplicative fault. 

6.1.  Step 1 
We define the first variable of backstepping ܢଵ = ଵܠ = ሚୟ܎	and the estimated fault errors ,ୣܙ = መୟ܎ − ሚ୫܎ , ୟ܎ = መ୫܎ −  . ୫܎
where, ܎መୟ: estimated additive fault; ܎መ୫: estimated multiplicative fault; ܎ሚୟ	: additive fault error; ܎ሚ୫	: multiplicative fault error.  

The second variable of backstepping is:  ܢଶ = ଶܠ − હଵ=	૑ୱ୭ − હଵ																																																																																																																																					(37) 
where, હଵ is a virtual control law. 
 

 

No adaptive 
backstepping technique 

Adaptive design of 
Lyapunov 

Adaptive backstepping 

Lyapunov function 
Control law 

Adaptation law
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The first subsystem of the mathematic model is independent of faults. Therefore, the design of the first 
step of the adaptive backstepping technique is the same as the traditional backstepping and the 
derivative of the first Lyapunov function does not change. Vሶଵ = ଵܢ୘(ܙ)ଵ۵ܓ(ܙ)ଵ୘۵ܢ− +  ଶ (38)ܢ(ܙ)ଵ୘۵ܢ
The term ܢଵ୘۵(ܙ)ܢଶ will be eliminated in the next step. 

6.2.  Step 2 
ଶܢ  = ૑ୱ୭ − હଵ (39) 
Its time derivative is expressed as, ܢሶଶ = ૑ሶ ୱ୭ − હሶ ଵ (40) ૑ୱ୭ = ૑ୱ୍ −  ૑଴ (41)ۯ
We replace the equation (41) in (40), we obtain ܢሶଶ = ૑ሶ ୱ୍ − ሶۯ ૑଴ − હሶ ଵ (42) 
Iܢሶଶ = ۷૑ሶ ୱ୍ − ሶۯ۷ ૑଴ − ۷હሶ ଵ (43) 
We choose the following Lyapunov function  Vଶ൫ܢଵ, ,ଶܢ ሚ൯܎ = Vଵ(ܢଵ) + 12 ଶܢ	ଶ୘۷ܢ + 12 ሚୟ୘܎ ડିଵ܎ሚୟ + 12 ሚ୫୘܎ ડିଵ  ሚ୫ (44)܎
where, 
 ડ is a design parameter which must be positive. 

The time derivative of the Lyapunov function is expressed as, 	Vሶଶ = Vሶଵ + ሶଶܢ	ଶ୘۷ܢ + ሚ୫୘܎	+	መሶୟ܎ሚୟ୘ડିଵ܎ ડିଵ܎መሶ୫ (45)	Vሶଶ = ଶ୘ൣ൫۱୥୥ܢ + ۱ୣ୶୲ − ૑ୱ୍ ⨯ ൫۷૑ୱ୍ + ൯ܐ − ሶܐ୫܎ − ୟ൯܎ − ሶۯ۷ ૑଴ − ۷હሶ ଵ൧ – ଵܢ୘(ܙ)ଵ۵ܓ(ܙ)ଵ୘۵ܢ ଶܢ(ܙ)ଵ୘۵ܢ											  + + ሚ୫୘܎	+	መሶୟ܎ሚୟ୘ડିଵ܎ ડିଵ܎መሶ୫ 
 

 (46)
	Vሶଶ = ଵܢ୘(ܙ)ଵ۵ܓ(ܙ)ଵ୘۵ܢ− + ଶ୘ൣ൫۱୥୥ܢ+					 ଶܢ(ܙ)ଵ୘۵ܢ + ۱ୣ୶୲ − ૑ୱ୍ ⨯ ൫۷૑ୱ୍ + ൯ܐ − ሶܐመ୫܎ − መୟ൯܎ − ሶۯ۷ ૑଴ − ۷હሶ ଵ൧ + ሚୟ୘܎ ቂܢଶ + 	ડିଵ܎መሶୟቃ 
ሚ୫୘܎+           ቂܐሶ ଶܢ + 	ડିଵ܎መሶ୫ቃ 

 (47)
To make this derivative negative, we choose the control law ܐሶ 	 as follow, ܐሶ = መ୫ିଵ܎ ቂܓଶܢଶ + ଵܢ୘(ܙ)۵ + ቀ۱୥୥ + ۱ୣ୶୲ − ૑ୱ୍ ⨯ ൫۷૑ୱ୍ + ൯ቁܐ − መୟ܎ − ሶۯ۷ ૑଴ − ۷હሶ ଵቃ																					   (48) 
The update laws of the estimated faults are expressed as, ܎መሶୟ = −ડ	ܢଶ (49) ܎መሶ୫ = −ડ	ܐሶ  ଶ (50)ܢ	
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7.  Simulation results 
In this section, we present the simulation results obtained for the controllers exposed previously. These 
results are obtained using the following parameters.  

Table1. Satellite simulation parameters. 

Parameter Value 

Inertia [kg.m2] ൥1200 0140 0010൩ 
Orbit [km] 686 

Inclination [deg] 98 

Initial attitude [deg] [5 10 −10] 
Initial attitude rate [0 −0.06 0] 
External Torques [N.m] ቎ 10ି଻(5 cos(ω଴t) + 1)10ି଻(5 cos(ω଴t) + 2sin(ω଴t))10ି଻(5 cos(ω଴t) + 1) ቏

 
Table 2. Desired attitude for the Euler angles. 

Desired attitude [deg] [10 30 20] 
 

Table 3. Backstepping parameters. ܓଵ ܓଶ 0.01 ∗ eye(3) 8 ∗ eye(3) 
 

Table 4. Adaptive backstepping parameters. ܓଵ ܓଶ ડ 0.01 ∗ eye(3) 8 ∗ eye(3) 50 ∗ eye(3) 
Two actuator faults are considered simultaneously. We introduce at the time t=400 sec an additive 
fault	ࢌ௔(࢚). 	܎ୟ(ܜ) = ൜ 0																																 t < 2		ܿ݁ݏ	400 + 0.01 cos(0.5ᴨt) t ≥ 400	sec 

Then, at the time t=600 sec a multiplicative fault		ࢌ௠(࢚). 	܎୫(ܜ) = ൜ 1																																 t < 0.5		ܿ݁ݏ	600 + 0.07 cos(0.5ᴨt) t ≥ 600	sec 
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The simulation results are presented as follow. 
 

 

Figure 3. Actual and estimated attitude - No adaptive backstepping. 

 

Figure 4. Errors of estimated attitude-No adaptive backstepping. 
 

 
Figure 5. Actual and estimated attitude - Adaptive backstepping  
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The figures 3-6 show the estimated attitude and its error of the two controllers (no adaptive and 
adaptive backstepping). These results are obtained using the same simulation conditions. We clearly 
observe in figures 2-3 that the actuator faults are not compensated by the backstepping controller, the 
consequence of these faults is catastrophic, the attitude diverges and the Euler angle errors are very 
large (200 deg). However, in figures 5-6 the desired attitude tracking is assured even the occurrence of 
the actuator faults at t=400 sec and t=600. In addition, the control torques converges to zero. 
From all of the above, it is clearly found that the presented controller can guarantees the control 
performance, it succeed despite the combination of these faults. 

8.  Conclusion 
In this work, we presented a synthesis of control laws for Low Earth Orbit (LEO) micro-satellite 
attitude stabilization using three axis controls by reaction wheels, and under actuator faults. All these 
laws are based on the Lyapunov theorem. Firstly, a nominal backstepping controller was developed 
when the actuator is fault-free. Then, a fault tolerant controller is designed to compensate the actuator 
faults. Two types of this latter were considered (additive and multiplicative faults). The presented 
control strategy is based on adaptive backstepping technique. This latter is designed by combining two 
methods (the adaptive design of Lyapunov and the no adaptive backstepping technique). 
The results of this work demonstrate the effectiveness of the presented technique. It is found that the 
presented controller can guarantees the control performance despite the combination of these faults. 

 

Figure 6. Errors of estimated attitude - Adaptive backstepping. 

 

Figure 7. Control torques. 
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As a future research, we will develop other control techniques to compensate the actuator faults such 
as the super twisting algorithm. 
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