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Abstract. An enhanced approach to fault-tolerant control design is proposed in the paper for
linear systems subject to cascade control strategy, while static and dynamic output controllers
are employed to maintain the stability of the overall interconnected control structure. The
controller gains are solved simultaneously using two-step linear matrix inequality formulation,
conditioned by linear matrix equalities. A simulation example, subject to a system matrix
parameter fault, demonstrates the effectiveness of the proposed method of design and cascade
control technique.

1. Introduction

Operating conditions in modern engineering systems are still exposed to possibility of system
failure. Any failure of the sensors, actuators or other system components can drastically change
the system behavior. Fault tolerant control (FTC) allows a strategy to improve reliability of
the whole system and so many techniques have been proposed especially for sensor and actuator
failures with application to a wide range of engineering fields. To recover at least in part the
performance of the fault-free control, one of the main ideas to control reconfiguration design
is to modify the feedback gain so that the reconfigured system approximates the dynamics of
nominal closed-loop system. In the case of complex technological systems, it is possible to
predesign controllers for the anticipated fault cases, and switch to the corresponding control law
once a fault is detected and isolated.

One of the key reconfigurable control methods is reference model based control, where the
main objective is to maintain as much similarity as possible achieved by reassigning the feedback
gains to the original designed. Based on modified pseudoinverse methods [6], [7], [8], the lack of
stability guarantee limits hardly such use in the design of FTC [15], [16]. Rather than claiming
the closed-loop faulty system to have the same model as the nominal system, it can be required
to design the control reconfiguration for trajectory following problem in which the reference is
the nominal closed-loop system trajectory, or its approximates [2], [4].

Cascade control structures are mainly used to achieve primarily suppression of a disturbance
before it propagates to the parts of the plant [13]. To apply in reconfiguration, a cascade
state controller structure is proposed in [1], [9], to keep intact the original controller and
the nominal model trajectory tracking, while the error between the nominal output and the
measurable faulty output variables is proposed as a basis for the correction. Relaxing the
existence conditions for reference model state following, the technique proposed in this paper
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generalizes the design principle in accordance to the model-reference control tenets subject to a
system matrix parameter fault [5], [11], [12]. To achieve the desired control objective, the bi-
proper dynamic output controller in combination with the static output control part is realized,
as a principal novelty, within the reconfiguration cascade structure. A characteristic feature
of such structure is that even after the fault occurrence is maintained the inner loop with the
nominal control law parameters. The approach utilizes the measurable input and output vector
variables, design conditions are based on linear matrix inequality (LMI) technique combined with
regularization of bilinear forms by linear matrix inequality approach, which give an effective way
to calculate the controller parameters.

The paper is organized as follows. Ensuing the introduction given in Sec. 1, Sec. 2 presents
the problem formulation focusing on assumptions about the controller structure properties. In
Sec. 3 the main properties of the method exploiting the cascade structure for linear systems
with system dynamic faults is presented and the separation principle is proven. Subsequently,
Sec. 4 - 6 derive new design results when using the bi-proper dynamic output controller, static
output control and static decoupling principle in the fault-tolerant cascade control structure, all
in the framework of LMIs and LMEs. Conforming the results, Sec. 7 follows with an illustrative
example and simulations and, finally, some concluding remarks are reached in Sec. 8.

Throughout the paper, the following notation was used: xT , XT denotes the transpose of
the vector x and the matrix X, respectively, rank( · ) remits the rank of a matrix, for a square
matrix X < 0 means that X is a symmetric negative definite matrix, the symbol In indicates
the n-th order unit matrix, IR notes the set of real numbers, and IRn, IRn×r refer to the set of
all n-dimensional real vectors and n× r real matrices, respectively.

2. Problem formulation

In the paper, there are taken into account square linear dynamic systems described in the fault-
free conditions as

q̇(t) = Aq(t) +Bu(t) , (1)

y(t) = Cq(t) , (2)

where q(t) ∈ IRn stands up for the system state vector, u(t) ∈ IRr denotes the input vector,
y(t) ∈ IRm is the measurable output vector, A ∈ IRn×n, B ∈ IRn×r and C ∈ IRm×n are real
matrices and r = m. It is supposed that the system (1), (2) is stabilizable by the the bi-proper
dynamic output controller (DOC)

ṗ(t) = Jp(t) +Ly(t) , (3)

u(t) = Mp(t) +Ny(t)−Ww(t) (4)

of an order p, where it can be accepted 1 ≤ p < n (reduced order), p = n (full order) and
n < p ≤ pm (upgraded order) and where p(t) ∈ IR p is the vector of the controller state variables,
w(t) ∈ IRm is desired output signal vector and W ∈ IRr×m is the signal gain matrix. With
respect to the real matrices J ∈ IR p×p, L ∈ IR p×m, M ∈ IR r×p, N ∈ IR r×m, the controller
parameter notation takes for K◦ ∈ IR(p+r)×(p+m) the following prescribed structure

K◦ =

[
J L

M N

]
. (5)

The model of the system with a faulted dynamics is taken as [11]

q̇f (t) = Afqf (t) +Bu◦(t) , (6)
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yf (t) = Cqf (t) , (7)

where qf (t) ∈ IRn, uf (t) ∈ IRr, yf (t) ∈ IRm denote the faulty system state variables vector, the
vector of the input variables and the vector of output variables, respectively, u◦(t) ∈ IRr is a
composed reference input signal to the cascade structure and Af ∈ IRn×n is the faulty system
dynamics matrix. That the problem of the cascade structure design is solvable, it is assumed
the pair (Af ,B) is stabilizable [12].

3. Separation principle

Considering the static output control (SOC) principle so that

u◦(t) = Kyf (t) + u⋄(t) = KCqf (t) + u⋄(t) , (8)

such control corresponds to the closed-loop state-space representation of the faulty system

q̇f (t) = Acrqf (t) +Bu⋄(t) , (9)

yf (t) = Cqf (t) , (10)

where
Acr = Af +BKC , (11)

while u⋄(t) is the signal acting on the input of the faulty system.

Theorem 1 The state of the faulty system (9), (10) under the control policy

u(t) = Mp(t) +Ny(t)−Ww(t) , (12)

u⋄(t) = Mpf (t) +Nyf (t)−Kyr(t) , (13)

asymptotically converge to the state of the reference model if Acn, Acr, J are Hurwitz, where

Acn = A+BNC , Acr = As +BKC , As = Acn +Af −A , (14)

N ∈ IRr×m is the dynamic controller gain matrix, K ∈ IRr×r is the static output control gain
matrix, W ∈ IRr×m is the signal gain matrix and J ∈ IRp×p is the system matrix of the dynamic
controller.

If Acn, Acr, J are Hurwitz and

eq(t) = q(t)− qf (t) , ep(t) = p(t)− pf (t) , ey(t) = Ceq(t) , (15)

then the autonomous equations

q̇f (t) = Acrqf (t) , ėq(t) = Acneq(t) , ṗf (t) = Jpf (t) , ėp(t) = Jep(t) (16)

are asymptotically stable.

Proof: Describing the dynamics of the bi-proper dynamic controller in a faulty regime as

ṗf (t) = Jpf (t) +Lyf (t) , (17)

where pf (t) ∈ IR p is the vector of the controller state variables in the faulty regime then,
incorporating all state vectors occurring in the control loop, the composed dynamic model
becomes 

q̇f (t)
q̇(t)
ṗf (t)
ṗ(t)

 =


Acr 0 0 0
0 A 0 0

LC 0 J 0
0 LC 0 J




qf (t)
q(t)
pf (t)
p(t)

+


B 0
0 B
0 0
0 0

 [
u⋄(t)
u(t)

]
. (18)
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To apply the separation principle, the transform matrix T is defined as

T =


In 0 0 0
−In In 0 0
0 0 Ip 0
0 0 −Ip Ip

 , T−1 =


In 0 0 0
In In 0 0
0 0 Ip 0
0 0 Ip Ip

 , (19)

where, carrying out the indicated separation, it yields

T


qf (t)
q(t)
pf (t)
p(t)

 =


In 0 0 0
−In In 0 0
0 0 Ip 0
0 0 −Ip Ip




qf (t)
q(t)
pf (t)
p(t)

 =


qf (t)
eq(t)
pf (t)
ep(t)

 , (20)

T


Acr 0 0 0
0 A 0 0

LC 0 J 0
0 LC 0 J

T−1 =


Acr 0 0 0

A−Acr A 0 0
LC 0 J 0
0 LC 0 J

 , (21)


In 0 0 0
−In In 0 0
0 0 Ip 0
0 0 −Ip Ip




B 0
0 B
0 0
0 0

 =


B 0

−B B
0 0
0 0

 , (22)

that is (18) can be rewritten in an equivalent form
q̇f (t)
ėq(t)
ṗf (t)
ėp(t)

 =


Acr 0 0 0

A−Acr A 0 0
LC 0 J 0
0 LC 0 J




qf (t)
eq(t)
pf (t)
ep(t)

+


B 0

−B B
0 0
0 0

 [
u⋄(t)
u(t)

]
. (23)

Considering the composed cascade structure input signals as (12), (13), it is easily verified that
B 0

−B B
0 0
0 0

 [
Mpf (t) +Nyf (t)−Kyr(t)
Mp(t) +Ny(t)−Ww(t)

]

=

[
BMpf (t) +BNyf (t)−BKyr(t)

BMep(t) +BNCeq(t)−BWw(t) +BKyr(t)

] (24)

and, consequently,
q̇f (t)
ėq(t)
ṗf (t)
ėp(t)

 =


Acr +BNC 0 BM 0
A−Acr A+BNC 0 BM

LC 0 J 0
0 LC 0 J




qf (t)
eq(t)
pf (t)
ep(t)



+


0 −BK

−BW BK
0 0
0 0

 [
w(t)
yr(t)

]
.

(25)

Because of the block structure of the connected system matrix in (25), it is evident that the
separation principle holds.
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Using the terms given above, it can write

Acr +BNC = Af +BKC +BNC = A+BNC +Af −A+BKC , (26)

Acr +BNC = Acn +Af −A+BKC = As +BKC = Asc , (27)

respectively, and (27) gives (14).
Since the separation principle yields, to obtain an asymptotic stable solution of (25), the

matrices Acn, Acr of the structures (14) and the matrix J have to be Hurwitz. This concludes
the proof.

4. Dynamic controller parameter design

Exploiting the separation principle, it can write for (15) and the error subsystem autonomous
block in (25) that [

ėq(t)
ėp(t)

]
=

[
A+BNC BM

LC J

] [
eq(t)
ep(t)

]
, (28)

ey(t) =
[
0 Im

] [ 0 Ip

C 0

] [
eq(t)
ep(t)

]
. (29)

Introducing the notations

e◦T (t) =
[
eTq (t) eTp (t)

]
, (30)

A◦ =

[
A 0

0 0

]
, B◦ =

[
0 B

Ip 0

]
, C◦ =

[
0 Ip

C 0

]
, I◦ =

[
0 Im

]
, (31)

where A◦ ∈ IR(n+p)×(n+p), B◦ ∈ IR(n+p)×(p+r), C◦ ∈ IR(p+m)×(n+p), I◦ ∈ IRm×(p+m), than the
state-space equations (28), (29) take the forms

ė◦(t) = A◦
ce

◦(t) , (32)

y◦(t) = I◦C◦e◦(t) , (33)

where, with K◦ given in (5),
A◦

c = A◦ +B◦K◦C◦ . (34)

In the sequel, it is supposed that the pair (A◦,B◦) is stabilizable and the couple (A◦,C◦) is
detectable [3].

Theorem 2 The error equation (32) converges asymptotically to their equilibrium if there exist
a symmetric positive definite matrix Q◦ ∈ IR(n+p)×(n+p), a regular matrix H◦ ∈ IR(p+m)×(p+m)

and a matrix Y ◦ ∈ IR(p+r)×(p+m) such that

Q◦ = Q◦T > 0 , (35)

A◦Q◦ +Q◦A◦T +B◦Y ◦C◦ +C◦TY ◦TB◦T < 0 , (36)

C◦Q◦ = H◦C◦. (37)

When the above conditions hold then the composed gain matrix of the bi-proper dynamic
controller is given as

K◦ = Y ◦(H◦)−1 =

[
J L

M N

]
. (38)
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Proof: Defining the Lyapunov function candidate as follows

v(e◦(t)) = e◦T (t)P ◦e◦(t) > 0 , (39)

where P ◦ > 0 is a symmetric positive definite matrix, then it has to be satisfied

v̇(e◦(t)) = ė◦T (t)P ◦e◦(t) + e◦T (t)P ◦ė◦(t) < 0 . (40)

Substituting (32) into (40) results

v̇(e◦(t)) = e◦T (t)(A◦T
c P ◦ + P ◦A◦

c)e
◦(t) < 0 (41)

and, evidently, (41) implies
P ◦A◦

c +A◦T
c P ◦ < 0 . (42)

Using (34), the open structure of (42) takes the form of the bilinear matrix inequality

P ◦(A◦ +B◦K◦C◦) + (A◦ +B◦K◦C◦)TP ◦ < 0 , (43)

which can be rewritten as

(A◦ +B◦K◦C◦)Q◦ +Q◦(A◦ +B◦K◦C◦)T < 0 , (44)

where Q◦ = (P ◦)−1. Writing now

B◦K◦C◦Q◦ = B◦K◦H◦(H◦)−1C◦Q◦, (45)

where H◦ is a regular square matrix, and defining the equality

(H◦)−1C◦ = C◦(Q◦)−1, (46)

then it yields
B◦K◦C◦Q◦ = B◦K◦H◦C◦ = B◦Y ◦C◦, (47)

where
Y ◦ = K◦H◦. (48)

Thus, with (47) then (44) imply (36) and the equality (46) gives (37). This concludes the proof.

5. Static output control parameter design

Theorem 3 The controlled state in the closed-loop structure with faulty system is stable if there
exist a positive definite symmetric matrix Q ∈ IRn×n, a regular matrix H ∈ IRm×m and matrix
Y ∈ IRm×m such that

Q = QT > 0 , (49)

AsQ+QAT
s +BY C +CTY TBT < 0 , (50)

CQ = HC , (51)

where
As = Acn +Af −A , Acn = A+BNC . (52)

When the above conditions hold, the static output control gain matrix is computed as

K = Y H−1. (53)
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Proof: Using the separation principle, (25), (27) imply the following equation, describing the
autonomous regime of the closed-loop system state with the faulty system matrix Af ,

q̇f (t) = (As +BKC)qf (t) , (54)

where As is prescribed in (52).
Considering the Lyapunov function candidate in the form

v(qf (t)) = qTf (t)Pqf (t) > 0 , (55)

where P ∈ IRn×n is a square, symmetric, positive definite matrix, then the time derivative of
(55) along a trajectory of (54) takes the form

v̇(q(t)) = q̇Tf (t)Pqf (t) + qTf (t)P q̇f (t) < 0 . (56)

Therefore, using (54), the inequality (56) can be written as

v̇(qf (t)) = qTf (t)P sqf (t) < 0 , (57)

where
P s = (As +BKC)TP + P (As +BKC) < 0 . (58)

Pre-multiplying the left-hand side and post-multiplying the right-hand side of (58) by the matrix
Q = P−1 leads to the bilinear matrix inequality

(As +BKC)Q+Q(As +BKC)T < 0 . (59)

Writing, analogously as above,

BKCQ = BKHH−1CQ = BY C , (60)

where H is a regular square matrix, and

H−1C = CQ−1, Y = KH , (61)

then (59) implies (50) and the equalities in (61) gives (51), (53). This concludes the proof.

6. Signal gain matrix design

Naturally, the control law (12) inherently defines a forced regime, where w(t) ∈ IRm is desired
output signal vector and W ∈ IRm×m is the signal gain matrix. Using the static decoupling
principle, the conditions to design the signal gain matrices W n, W f can be derived considering
that yr(t) = 0 by using the principle of superposition.

Theorem 4 If the system (1), (2) is stabilizable by the control policy (3), (4), and [17]

rank

[
A B
C 0

]
= rank

[
Af B
C 0

]
= n+m, (62)

then the matrix W takes, in the dependency on the system regime, the forms

W n =
(
C(A−BMJ−1LC +BNC)−1B

)−1
. (63)

W f =
(
C(Af −BMJ−1LC +BNC)−1B

)−1
. (64)
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Figure 1. Cascade control reconfiguration scheme

Proof: In a steady-state, the system equations (1), (2) and the control (3), (4) imply

0 = Aqo +Buo, (65)

0 = Jpo +LCqo, (66)

uo = Mpo +NCqo −Wwo , (67)

where qo, uo, po, wo are the steady-state values of the vectors q(t), u(t), p(t), w(t), respectively.
Since (66), (67) in the steady-state give

uo = (−MJ−1LC +NC)qo −Wwo , (68)

then, substituting (68) into (65), it yields

0 = (A−BMJ−1LC +BNC)qo −BWwo , (69)

qo = (A−BMJ−1LC +BNC)−1BWwo , (70)

respectively, and
yo = C(A−BMJ−1LC +BNC)−1BWwo . (71)

Thus, considering yo = wo, then (71) implies (63).
Analogously can be derived (64). This concludes the proof.
The cascade reconfiguration control scheme is presented in Fig. 1, where W = W n under

nominal control and W = W f after reconfiguration activation. To obtain a forced mode
structure, the reference input signal yr(t) has to be connected to w(t).

7. Illustrative example

In the example, there is considered the system (1), (2) in the state-space representation, where
the system matrices are [10]

A =


1.380 −0.208 6.715 −5.676

−0.581 −4.290 0.000 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

 , B =


0.000 0.000
5.679 0.000
1.136 −3.146
1.136 0.000

 ,

Af =


1.380 −0.208 6.715 −5.676

−0.581 −4.290 0.000 0.675
2.134 8.546 −13.308 11.786
0.048 4.273 1.343 −2.104

 , C =

[
1 2 1 1
1 1 0 2

]
.
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Considering the order of dynamic controller p = 2 then, solving (35)-(37) using Self-Dual-
Minimization (SeDuMi) package [14] for MATLAB, the task is feasible and

Q◦ =



0.2498 −0.0036 0.0193 0.1547 0.0000 0.0000
−0.0036 0.2515 0.0142 0.0000 0.0000 0.0000
0.0193 0.0142 0.1773 0.0387 0.0000 0.0000
0.1547 0.0000 0.0387 0.1437 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.5865 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.5865

 ,

Y ◦ =


−0.4337 0.0000 0.0000 0.0000
0.0000 −0.4337 0.0000 0.0000
0.0000 0.0000 0.0033 −0.2246
0.0000 0.0000 0.1453 0.1304

 , H◦ =


0.5865 0.0000 0.0000 0.0000
0.0000 0.5865 0.0000 0.0000
0.0000 0.0000 0.2547 0.6573
0.0000 0.0000 0.0387 0.1437

 .

The dynamic controller gain matrices are computed using (38) as follows

J =

[
−0.7395 0.0000
0.0000 −0.7394

]
, L = 10−3

[
−0.0131 0.1031
0.0369 −0.3260

]
,

M = 10−4
[
−0.1101 −0.0180
−0.1553 −0.1631

]
, N =

[
0.8193 −5.3100
1.4158 −5.5686

]
,

and guaranties the stable closed-loop state convergence, where the system matrix eigenvalues
spectrum is

ρ(A◦
c) = {−0.7394 − 0.7395 − 3.6642± 3.1351 i − 6.9476± 11.6631 i} .

Moreover, evidently, the structure of J implies that the bi-proper dynamic controller is stable.
To obtain the parameters for the static output controllers, (49)-(51) is solved with the result

Q =


0.2249 −0.0143 0.0248 0.1534

−0.0143 0.2553 0.0571 0.0000
0.0248 0.0571 0.1317 0.0384
0.1534 0.0000 0.0384 0.1455

 ,

Y =

[
0.0023 −0.0128
0.0650 0.2597

]
, H =

[
0.2311 0.6521
0.0384 0.1455

]
.

The obtained gain matrix K is

K =

[
0.0956 −0.5161

−0.0590 2.0498

]
which gives that all eigenvalues of Asc = As +BKC are stable, where

ρ(Asc) =
{
−2.8442 − 11.9300 − 6.6978± 9.5406 i

}
.

One can verify the stable eigenvalue spectrum of the system matrix in (25), where

ρ(A◦
cs) =

{
−0.7394 − 0.7394 − 0.7395 − 0.7395 − 2.8442 − 11.9300
−3.6642± 9.5406 i − 6.6978± 9.5406 i − 6.9476± 11.6631 i

}
,

which certify stability of the cascade control structure.
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Figure 2. System input signals

Simulations are realized in the forced mode and the noise environment where, to set up the
equal working point of the closed-loop system in the forced mode for nominal and faulty regimes,
the signal gains matrices were computed, and the system noise input is given so that

W n =

[
0.7880 −5.3257
1.1933 −5.7555

]
, W f =

[
0.7880 −5.3257
0.9820 −5.9368

]
,

V T
d =

[
1.136 1.136 5.679 3.146

]
, σ2

d = 0.08 .

The desired output values are prescribed by the vector w(t) as wT (t) = [ 1 2 ] (in simulation set
as −w(t) because the cascade structure is in a dual form - see Fig. 1), the system initial state
is q(0) = 0 and the dynamic controller initial state is p(0) = 0.

0 5 10 15 20 25 30 35
time [s]

-1

-0.5

0

0.5

1

1.5

2

2.5

3

y(
t)

y1(t)

y2(t)

Figure 3. System output response

As results, Fig. 2 and Fig. 3 show the input and output of the closed-loop system in the
cascade reconfiguration structure and forced mode, when the fault occurs in the matrix A at
the time instant t = 15s. The control reconfiguration law applied to the cascade structure with
the faulty system at the time instant t = 20s (reflecting the fault detection and isolation time
delay lasted approximately 5 s). Practically, it means that the control law parameters of the
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cascade structure are still the same and, with unchanged w(t), there W n is switched to W f .
It is obvious that the system fault impact on the system output was compensated by using the
cascade reconfiguration control structure.

8. Concluding remarks

Exploiting the reference model control design principle, the influence of the system matrix
parameter faults on the system output is analyzed for control reconfiguration. To achieve the
desired control objective, the bi-proper dynamic output controller, in combination with the static
output control part, is realized within the reconfiguration cascade structure. A specific feature
of this is that even after the fault occurrence is maintained the inner loop with the nominal
control loop parameters, so it was necessary to use as a reference model a state form based on
the faulty system description. Because dynamic and static output controllers are exploited, in
terms of synthesis it has proven advantageous to use dual cascade control structure.

To optimize the cascade reconfiguration structure properties, the gain matrix parameters
design conditions are designed to reflect the stability of both regimes, verifying them separately
in the sense of Lyapunov asymptotic stability. In consequence, the design requires solution of
two set of consistent linear matrix inequalities, every one combined with an associated matrix
equality.

Adapting to the faulty plant and the fault detection subsystem with a time delay, the
reconfigured gain matrix parameter is changed after a fault occurrence, keeping the rated control
intact. The reconfiguration is so conveyed as an autonomous formula that may be designed and
organized online. Because the faulty mode is optimized and bi-proper dynamic output control
is used, large system input and output signal peeks, occurring at the starting interval of control
when the standard cascade structure is used, are substantially reduced.

Presented method for linear continuous-time systems provides useful and easily imple-
mentable structure in process of control reconfiguration for the system matrix parameter faults.
A simulation example, subject to given type of failures, demonstrates the effectiveness of the
proposed form of the fault tolerant control design technique.
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Lomnica Slovakia 188-93

[6] Gao Z 1996 Techniques in reconfigurable control system design Digital Control Systems Implementation
and Computational Techniques (San Diego:Academic Press) 102-15

[7] Gao Z and Antsaklis P J 1989 On the stability of the left pseudo-inverse method for reconfigurable control
systems Proc IEEE National Aerospace and Electronics Conf NAECON 1989 Dayton OH USA 333-7

[8] Gao Z and Antsaklis P J 1991 Reconfigurable control systems desing via perfect model-following Proc 1991
AIAA Guidance Navigation and Control Conf New Orleans LA USA 239-46

13th European Workshop on Advanced Control and Diagnosis (ACD 2016)                                     IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 783 (2017) 012019          doi:10.1088/1742-6596/783/1/012019

11



[9] Huang C Bai Y and Liu X 2010 H-infinity state feedback control for a class of networked cascade control
systems with uncertain delay IEEE Tran Industrial Informatics 6(1) 62-72

[10] Kautsky J Nichols N K and Van Dooren P 1985 Robust pole assignment in linear state feedback Int J
Control 41(5) 1129-55
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