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Abstract. In this study, we used asymptotic iteration method (AIM) to obtain the
relativistic energy spectra and wavefunctions for D Dimensional Dirac equation.
Solution of the D Dimensional Dirac equation using asymptotic iteration method was
done by four steps. The first step, we substitutied g deformed Poschl-Teller potential
plus g-deformed Manning Rosen Non-Central potential into D dimensional Dirac
equation. And then, general term of D dimensioanl Dirac equation for g deformed
Poschl-Teller potential plus g-deformed Manning Rosen Non-Central potential was
reduced into one dimensioanal Dirac equation, consist of radial part and angular part.
The second step, both of one dimensional part must be reduced to hypergeometric type
differential equation by suitable parameter change. And then, hypergeometric type
differential equation was transformed into AIM type differential equation. For the last
step, AIM type differential equation can be solved to obtain the relativistic energy and
wavefunctions of Dirac equation. Relativistic energy and wavefunctions were
visualized by using Matlab software.

1. Introduction

P. A. M Dirac submit the equation known as the Dirac equation. The Dirac equation has a probability
density which is always a positive value, but the solution still provide information of a free particle of
negative energy. The Dirac equation describes the basic correspondent for particle spin % in
electron[1]. Dirac found that a particle that has mass and charge as an electron must have an intrinsic
angular momentum and magnetic moment[2]. The Dirac equation is used when a particle is exposed to
potential field strong relativistic effects must be considered that emberikan corrections to the
nonrelativistic quantum mechanics[3]. In a spin ¥ particle, there is the concept of spin symmetry and
symmetry pseudospin. Spin symmetry and pseudospin symmetry occurs vector potential V (r) and a
scalar potential S (r) is a constant. Spin symmetry occurs when V (r) = S (r) and pseudosopi symmetry
occurs when V (r) = - S (r). The concept of spin symmetry has been applied to a spectrum of
machinery and antinukleon, and the concept of symmetry pseudospin used to explain quasi-
degeneration of double nucleons, superdepormasi in nuclei[6], exotic nuclei[7], and to establish an
affective nuclear shell-model scheme][8].
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This study presents the completion of D-Dimensional Dirac equation in the case of spin symmetry for
g-deformed Posch-Teller potential and g-deformed non-central Manning Rosen using asymptotic
iteration method. completion of the D-Dimensional Dirac equation by reduction into hipergeometri
equations with variable substitution. Energy spectrum and the wave functions obtained from
asymptotic iteration method.

2. Asymptotic Iteration Method (AIM)
This method is used to solve differensial equetion in the following form:

Yo ()= (X)¥n ()= 5, (x)y, (x)=0 1)

The one-dimensional Dirac equation can be reduced into hypergeometric or confluent hypergeometric
type differential equation by suitable changes of variables, and then changes it into the differential
equation which has the form in Eq.(1). The solution of Eq.(1) can be obtained by using iteration of A;
and s;,

Ai(x) =iy + Aiq Ao + sioq
5i(x) = si_1" + Sphdi—q
i=123,.. 2)

Eigenvalues can be obtained using equation:[9]
Ai(x)si-1(x) = i1 ()s;(x) =0 =4;,i =123 ... 3
On the other hand, Eqg.(1) can be written in term:

" txN+1 c+1\ waxN
y' (@) =2 (o =)y () — e (4)

X

Eq.(4) is AIM-type differential equation which is solved by using Eq.(5)[10,11]

V() = (=D"C'(N +2)" ,F, (—=n,p + n, 0, bx"*?) ®)
where
__T(o+n) __2c+N+3
(0, =" gz 7
_ (2c+1)b+2t
T (N+2)b (8)

C' is normalization constant and , F, is hypergeometric function.[11]

3. Solution of Dirac Equation in D Dimension
The dirac equation with scalar potential S(r) and vector potential V(r) (h = 1, ¢ = 1)[16],
{@.p+BM+SH)@E@ ={E-VAWE) " 9)
which E is relativistic energy of system and p is momentum operator (p = —iV), while @ and g is
matrix in term:

a=(2 9) (10
s=( ) (1)

Where & are Pauli’s matrices and 1 is the 2x 2 unit matrix. Here we have used the relation for the
Pauli’s matrices as follow
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6.6,+6,6,=25,1

The wave function of spinor Dirac can be classified in two form, spinor upper

o(r) as follows:[12,13]
FulD),

D-1 li.dpy

_ fnk(r) _| r?
W(r)_(gnk(r)} iG+§I)Y.~".,A.~, (X=6,.0,,....05.,)

r 2

(x=0,0,,..., Os_,)

we have

¢6:P0y(r) = [E =V (F) - Mc* = S(F)]f,, (r)
c6.pf, (r) = |E =V (F)+ Mc? + S(F)]g,.(r)
For spin symmetry equation (14a) becomes
Incl(r)= [E hﬂ] foc(r)

&g (r)=[E—-2v(F)-M]f, (r)

Substituting Eq.(15a) into Eq.(15b) yields
[p? +2V()(E + M)]fur () = [E? = M?]f (7)
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(12)

(13)

(14a)
(14b)

(15a)
(15b)

(16)

() and spinor lower

In spherical coordinates, modified Poschl-Teller potential combined with trigonometric Manning

Rosen non-central potential is defined as

sinh? ar coshzar sin2 @

V(r,0)= [K(K 1) 77(77+1)j+rlz[v(_v_l)—chotqHJ

Subsitute Eqg.(17) into Eq.(16) ans simplify the resuling equation, and let

fure = 2 0(6) ()

Then we have,

D-1
r’ r2 o o 0 Fulr) re(xe — 1) n(n+1)
| rot = +r?
Fo(r) r°* or or o2 sinh? ar cosh§ ar
r

[E2+M2]? =1, ,(1,, +D—2)

Separating the variables in Eq.(20), we obtain
( L, D— 1)[ L, D— 3)
d ':nk (r) D-1 D-1 2 ': (r)

[[E+M{K(K D, ’7(’7+1)j [EZ—MZ]]Fnk(r)=O

@)j:o

4. Analytical solution of radial and angular parts of the dirac equation

sinh?2 ar cosh? ar

1 _1(6smzw 3(93)+@3

Y,(6,)sin? 6, | 96, 00,

4.1 Solution of the radial part

][emy

(7

(18)

(19)

(20)

(21)

The radial part of the Dirac equation in Eqg. (21) we use the approximation value for the centrifugal

term[14,15],



8th International Conference on Physics and its Applications (ICOPIA) IOP Publishing
Journal of Physics: Conference Series 776 (2016) 012082 doi:10.1088/1742-6596/776/1/012082

1 u?

~

r2 " 4sinh2 ur

(22)

Substituting Eq.(22) into Eq.(20) and simplifying the equation by substituting variable coshf1 =z,
we have

d°F.(z) 1 dF,(2) A B, A E
sa- )T L 20) 0B (LA BB e ()0 3
by substituting,
Fu(z2)=2(a—2) f (24)
Into Eq(23), we have the second-orde differential
. 1 : 2 B
z2(q—z)f +([25+§)q+2(25+2y+1)jf —[(5+;/) n jf 0 (25)

Where 46%q = 28q + B, and 4y%q = 2yq + Aq
Eq.(25) can be transform to differential equation type AIM,
R S1 B} . E.
o (25 +2y+1)27(2c> +§jq . (S + ) =,
z(g—z) z(a—2)
(26)

From Eq.(26), we have
((26+2y+1)z—(26+§)q)

0 — z(,q—z) (27)
(6+r2-5)
S0 =" (28)

By using Eq.(3) and using Matlab 2011 software, energy eigenvalue can be obtained, with ¢ = Ef’

Sy =S, =0 > &, =25+ 2y +1)+ {5+ ¥ NS+ y + 1)} = (5 + y +1)
s —S,4 =06, =45+ 4y +4)+{S+y)o+y+1)}=(5+y+2)
;4 — 834, =05, = (65 +6y +9)+{(5+ )5+ 7 +1)}=(5+y +3)

can be generalized as follow
e=(+y+n,)? (29)
From Eq. (63) we get relativistic energy Eq. of this system is

2
E*-M?|1 1 1 1 1 1 (30)
[a—z]z=[§q Bsf"zqiEQ Ag+zq+nr+§q2]

where n,. is radial quantum numbers (n,, = 0,1,2...), L is orbital quantum numbers which is obtained
from angular part solution. And then, radial wavefunction can be obtain by using Eq.(5), Eq.(6), Eq.(7)
and Eq.(8), we have:

c=y+N=-1,t=86-2b=1,
4 2
__ 2c+N+3 _ (2c+Db+2t

1
S0, @ oo = 26 + 3 and p = Wi 26 + 2y
From Eq.(5), we have,
fur@) = (D))" (26 +3) LR (—nr26 + 2y +1,,26 +3,2) (31)
ny

By substituting Eq.(31) to Eq.(24), we have radial wavefunction,
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fur@ = 25(q = 2 (D" (O™ (26 +3)  ,F, (—np 26 42y +1,,26+3,2)  (32)
ny

which z = coshg , s0

fur(@) = 28(q = DY (D" (™ (26 +3)  ,F (-np 26+ 2y +1.,26+2,2)  (39)
nr

where C(n,.) is radial normalization constant, ,F; is hypergeometric function.

4.2 Solution of the angular part
For angular part in Eqg.(21), can be obtain by using AIM to find orbital quantum number.

82;9(;9) [E+M (V(V 1) —2qcot, 61]Y1(61)+ AY,(0,)=0 (34)
Equation (65) can be wntten as, cotqf; = i(1— 2z)
d2v,(z,) av,(z,)
z,@— zl)d—g12 +@— 221)d—'91
. . v_1). G2qi[E+M]+2) (2qi[E+M]+2) )
((=+ M- - e wl UCOEL )
by using
Yl(zl): zy (1_ Zl)ﬁ f (21) (36)

and simplying it, Eq.(35) can be transform to hypergeometric differential equation:
21(1_ Zl)fs"(zl)_'_ [(20‘ +l)_ Zl(za +20+ 2)] fsv(zl)
+([E+MNMV+1)—(ax+ BN+ p+1))f(z,)=0 @7

Eq. (37) is hypergeometry type Eg. and we can solve it by AIM as follow
(z1(2a+2B+2))-(2a+1)

AO - z1(1-24) (38)
_ ((a+B)(a+B+1)-[E+M]v(v+1)) (39)
z1(1-z4)

one can generalize Eq. (39)

- Y R v Ve P S
L \/[ [E+M]\,Z,+1)+‘11nlg [[E MMy +1)+ 7 zj o

Where L is orbital qguantum number and n; is angular quantum number. From Eq.(5), we have
Y(2) = (=D)™MC,(1)"(0)y, , F (=1, p + 1y, 0,02V +2) (41)
C, is angular normalization constant.

Solution for € ,and 65 can be determined by the same way with solution for 61, And we get solution for
orbital quantum number for 6;,and 65 respectively as follows:

, =1 - @lE+M]f - - —Mvv— +——n——2——
LZ\}I{\/(&lj[Eiﬁv(szﬂlnl]A [\/(‘1 Ll;) EqM -+ - ;] :
4 q 4 2 (42)
- ~@lE M)’ (frate oot L)
] \/(\/lzq[EJrM]v(vl)Jrin,;j [\/iq o ' 4 2] ' (43)

5. Result and Discussion

In this section, we discuss several results which were obtained in the previous section. From
relativistic energy equation in Eq.(30) and orbital quantum number equation in Eq.(41), and by using
Matlab software we have numeric solution of relativistic energy are listed in Table 1 with parameters
k=2n=2v=3,qg=2and M =5 fm™1, the negative value of relativistic energy is taken due to
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the pseudospin symmetric limit[19] By inspecting Table 1, show that increase of value @ and n,. in the
same quantum state causes decrease energy eigenvalue.

Table 1. Relativistic energy corresponding to several sates of a particle under the influence of modified
Poschl-Teller potential and trigonometric Scarf 1l potential.

En,.nlk\ (fm_l)

n n k «a a a
=0,1fm! =0,2fm! =0,3fm™!

0 0 0 -5.0805 -5.1083 -5.1411

1 1 0 -50715 -5.1181 -5.1351

2 2 0 -50798 -5.1289 -5.1738

3 0 0 -5.0887 -5.1358 -5.2678

By varying parameter which corresponding value & and y, some of the radial wavefunctions are
listed in Table 2. Radial wavefunctions for particle under the influence of modified P6schl-Teller
potential and Manning Rosen potential are affected by potential constants «, eta, g, v and by a .The
parameter a has a dimension inverse of distance in space that describes the reach of Paschl-Teller
potential. If « is enlarged, physically means that the potential reach is smaller in a space. By inspecting
Table 2, due to the increase in the value of a causes particles move further away from the nucleus and
show that change in radial wavefunctions are affected of potential constants «, eta, q and v.

Table 2. Energy eigenvalue in fm~t withn, =2n;, =2,v=2,q =4,M = 5,a = 0.05 for particle
under the influence of modified Poschl-Teller potential and Manning-Rosen non-central potential
variation k.

Nr Enr Fa.

0 -514162 (cos?ar) (sin: ar)VC'[Zé‘ N %)

1 500810 (cosiar)singar)e( (2o 2]][“ CpEo 2D cos: ar)]

(2s+3)

(cos2 ar )sinZ ar)(:'[Z(S + %j
2 -5.05656

(45 +4y +4))

- (— (25+27’+2XZ5+27’+3)(COS§ ar)zJ

[25_'_%] cosj ar + [25_'_%](25_'_%]
(cos§ arXsin§ ar)C'[— (2(5 -+ %)j

soassg |1 oo Peosgar o (SN2 L Er L SN2O L By r d)
3 . (2& +Ejnr (26) +Ej[25+§j

(26 +2y +3) (265 +2y +4)25 + 2y +5)

Eicnics)

(65 +6y+9) (cos? ar f —

(cos§ arf

6. Conclusion

The Dirac equation in D dimensions of g-deformed trigonometric Poschl-Teller potential combined
with Manning-Rosen non-central potential using Asymptotic Iteration Method (AIM). The radial part
of D- dimensions of the Dirac equation reduces to one dimensional Schrodinger type equation in
centrifugal approximation scheme. In the exact spin symmetric case, the relativistic energy equation
reduces to the non-relativistic energy in the non-relativistic condition. The radial part of the
wavefunction is obtained approximately from Eq.(33) and the angular part in Eq.(41). The results
show that the disturbance of modified Poschl-Teller Potential and trigonometric Manning-Rosen non-
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central potential change in the wave function of the radial part and the angular part. Relativistic energy
equatione can be obtained via AIM in Eq.(30) and equation of orbital quantum number | in Eq.(40),
Eq.(42) and Eq.(43), where both are interrelated between quantum numbers. Relativistic energy also is
solved numerically using Matlab software, where the increase in the radial qguantum number n, causes
a decrease in the energy spectrum.
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