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Abstract. In this study, we used asymptotic iteration method (AIM)  to obtain the 

relativistic energy spectra and wavefunctions for D Dimensional Dirac equation.  

Solution of the D Dimensional Dirac equation using asymptotic iteration method was 

done by four steps. The first step, we substitutied  q deformed Poschl-Teller potential 

plus q-deformed Manning Rosen Non-Central potential into D dimensional Dirac 

equation. And then, general term of D dimensioanl Dirac equation for q deformed 

Poschl-Teller potential plus q-deformed Manning Rosen Non-Central potential was 

reduced into one dimensioanal  Dirac equation, consist of radial part and angular part. 

The second step, both of one dimensional part must be reduced to hypergeometric type  

differential equation by suitable parameter change. And then, hypergeometric type 

differential equation was transformed into AIM type differential equation. For the last 

step, AIM type differential equation can be solved to obtain the relativistic energy and 

wavefunctions of Dirac equation. Relativistic energy and wavefunctions were 

visualized by using Matlab software. 

 

 

1. Introduction 

P. A. M Dirac submit the equation known as the Dirac equation. The Dirac equation has a probability 

density which is always a positive value, but the solution still provide information of a free particle of 

negative energy. The Dirac equation describes the basic correspondent for particle spin ½ in 

electron[1]. Dirac found that a particle that has mass and charge as an electron must have an intrinsic 

angular momentum and magnetic moment[2]. The Dirac equation is used when a particle is exposed to 

potential field strong relativistic effects must be considered that emberikan corrections to the 

nonrelativistic quantum mechanics[3]. In a spin ½ particle, there is the concept of spin symmetry and 

symmetry pseudospin. Spin symmetry and pseudospin symmetry occurs vector potential V (r) and a 

scalar potential S (r) is a constant. Spin symmetry occurs when V (r) = S (r) and pseudosopi symmetry 

occurs when V (r) = - S (r). The concept of spin symmetry has been applied to a spectrum of 

machinery and antinukleon, and the concept of symmetry pseudospin used to explain quasi-

degeneration of double nucleons, superdepormasi in nuclei[6], exotic nuclei[7], and to establish an 

affective nuclear shell-model scheme[8]. 
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This study presents the completion of D-Dimensional Dirac equation in the case of spin symmetry for 

q-deformed Posch-Teller potential and q-deformed non-central Manning Rosen using asymptotic 

iteration method. completion of the D-Dimensional Dirac equation by reduction into hipergeometri 

equations with variable substitution. Energy spectrum and the wave functions obtained from 

asymptotic iteration method. 

 

2. Asymptotic Iteration Method (AIM) 

This method is used to solve differensial equetion in the following form: 

          0
'

0

''
 xyxsxyxxy nonn      (1) 

 

The one-dimensional Dirac equation can be reduced into hypergeometric or confluent hypergeometric 

type differential equation by suitable changes of variables, and then changes it into the differential 

equation which has the form in Eq.(1). The solution of Eq.(1) can be obtained by using iteration of 𝜆𝑖 

and 𝑠𝑖, 

 

𝜆𝑖(𝑥) = 𝜆𝑖−1
′ + 𝜆𝑖−1𝜆0 +  𝑠𝑖−1 

𝑠𝑖(𝑥) = 𝑠𝑖−1
′ +  𝑠𝑜𝜆𝑖−1 

𝑖 = 1,2,3, …        (2) 

 

Eigenvalues can be obtained using equation:[9] 

𝜆𝑖(𝑥)𝑠𝑖−1(𝑥) − 𝜆𝑖−1(𝑥)𝑠𝑖(𝑥) = 0 = ∆𝑖 , 𝑖 = 1,2,3 ….    (3) 

On the other hand, Eq.(1) can be written in term: 

𝑦′′(𝑥) = 2 (
𝑡𝑥𝑁+1

1−𝑏𝑥𝑁+2 −
𝑐+1

𝑥
) 𝑦′(𝑥) −

𝑊𝑥𝑁

1−𝑏𝑥𝑁+2    (4) 

 

Eq.(4) is AIM-type differential equation  which is solved by using Eq.(5)[10,11] 

 

𝑦𝑛(𝑥) = (−1)𝑛𝐶′(𝑁 + 2)𝑛
12 F (−𝑛, 𝑝 + 𝑛, 𝜎, 𝑏𝑥𝑁+2)  (5) 

 

where 

(𝜎)𝑛 =
Γ(𝜎+𝑛)

Γ(𝜎)
 ,  𝜎 =

2𝑐+𝑁+3

𝑁+2
     (7)  

𝑝 =
(2𝑐+1)𝑏+2𝑡

(𝑁+2)𝑏
         (8) 

 

𝐶′ is normalization constant and 
12 F  is hypergeometric function.[11] 

 

3. Solution of Dirac Equation in D Dimension 

The dirac equation with scalar potential 𝑆(𝑟) and vector potential 𝑉(𝑟) (ℏ = 1, 𝑐 = 1)[16], 

{𝛼⃗. 𝑝⃗ + 𝛽(𝑀 + 𝑆(𝑟))}𝜓(𝑟) = {𝐸 − 𝑉(𝑟)}𝜓(𝑟) `   (9) 

which 𝐸 is relativistic energy of system and 𝑝⃗ is momentum operator (𝑝⃗ = −𝑖∇), while 𝛼⃗ and 𝛽 is 

matrix in term:  

 

α̂i = (
0 σ̂
σ̂ 0

),       (10) 

𝛽i = (
𝐼 0
0 −𝐼

)       (11) 

Where ˆ
i  are Pauli’s matrices and 1 is the 2 2  unit matrix. Here we have used the relation for the 

Pauli’s matrices as follow    
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ˆ ˆ ˆ ˆ 2i j j i ij      1
      (12) 

The wave function of spinor Dirac can be classified in two form, spinor upper ( )r and spinor lower

( )r as follows:[12,13]
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we have 

        rfrSMcrVErgpc nknk


 2.

   (14a) 

        rgrSMcrVErfpc nknk


 2.

   (14b) 

For spin symmetry, equation (14a) becomes 

 
 

 rf
ME

p
rg nknk




.


     (15a) 
      rfMrVErgp nknk 


2.     (15b) 

 

Substituting Eq.(15a) into Eq.(15b) yields 

[𝒑2 + 2𝑉(𝑟)(𝐸 + 𝑀)]𝑓𝑛𝑘(𝑟) = [𝐸2 − 𝑀2]𝑓𝑛𝑘(𝑟)   (16) 

 

In spherical coordinates, modified Pöschl-Teller potential combined with trigonometric Manning 

Rosen non-central potential is defined as 

 

 
     
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
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1
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 (17) 

 

Subsitute Eq.(17) into Eq.(16) ans simplify the resuling equation, and let 

𝑓𝑛𝑘 =
𝐹𝑛𝑘(𝑟)

𝑟
Θ(𝜃)𝜙(𝜑)       (18) 

 

Then we have, 
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Separating the variables in Eq.(20), we obtain 
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4. Analytical solution of radial and angular parts of the dirac equation 

4.1 Solution of the radial part 

The radial part of the Dirac equation in Eq. (21) we use the approximation value for the centrifugal 

term[14,15], 
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1

𝑟2 ≈
𝜇2

4sinh2 𝜇𝑟
        (22) 

 

Substituting Eq.(22) into Eq.(20) and simplifying the equation by substituting variable coshq
2 = 𝑧, 

we have 

       
 

  0
444

2
2

1 '

2

2





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E

z

B
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A

dz
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zqz

nk
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 (23) 

by substituting, 
    fzqzzFnk

        (24) 

 

Into Eq(23), we have the second-orde differential 

      0
4

122
2

1
2

'
2''' 











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
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 (25) 

Where 4𝛿2𝑞 = 2𝛿𝑞 + 𝐵𝑠 and 4𝛾2𝑞 = 2𝛾𝑞 + 𝐴𝑠 

 

Eq.(25) can be transform to differential equation type AIM,
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 (26) 

From Eq.(26), we have 

𝜆0 =
((2𝛿+2𝛾+1)𝑧−(2𝛿+

1

2
)𝑞)

𝑧(𝑞−𝑧)
       (27) 

𝑠0 =
((𝛿+𝛾)2−

𝐸𝑠
′

4
)

𝑧(𝑞−𝑧)
        (28) 

By using Eq.(3) and using Matlab 2011 software, energy eigenvalue can be obtained, with 𝜀 =
𝐸𝑠

′

4
 

 

       210110 111220   ss

       221221 214440   ss

       2

22332 319660   ss  
 

can be generalized as follow 

𝜀 = (𝛿 + 𝛾 + 𝑛𝑟)2       (29) 

From Eq. (63) we get relativistic energy Eq. of this system is 

 
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ME
rss



  (30) 

where 𝑛𝑟 is radial quantum numbers (𝑛𝑟 = 0,1,2 …), 𝑙 is orbital quantum numbers which is obtained 

from angular part solution. And then, radial wavefunction can be obtain by using Eq.(5), Eq.(6), Eq.(7) 

and Eq.(8), we have: 

 

𝑐 = 𝛾 +
1

4
, 𝑁 = −1, 𝑡 = 𝛿 −

3

2
, 𝑏 = 1, 

so, 𝜎 =
2𝑐+𝑁+3

𝑁+2
= 2𝛿 +

1

2
  and   𝑝 =

(2𝑐+1)𝑏+2𝑡

(𝑁+2)𝑏
= 2𝛿 + 2𝛾 

 

From Eq.(5), we have, 

𝑓𝑛𝑟(𝑧) = (−1)𝑛𝑟𝐶2(1)𝑛𝑟 (2𝛿 +
1

2
)

𝑛𝑟
12 F (−𝑛𝑟 , 2𝛿 + 2𝛾 + 𝑛𝑟 , 2𝛿 +

1

2
, 𝑧)  (31) 

 

By substituting Eq.(31) to Eq.(24), we have radial wavefunction, 
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𝑓𝑛𝑟(𝑧) = 𝑧𝛿(𝑞 − 𝑧)𝛾(−1)𝑛𝑟𝐶2(1)𝑛𝑟 (2𝛿 +
1

2
)

𝑛𝑟
12 F (−𝑛𝑟 , 2𝛿 + 2𝛾 + 𝑛𝑟 , 2𝛿 +

1

2
, 𝑧) (32) 

which 𝑧 = coshq
2 , so 

𝑓𝑛𝑟(𝑧) = 𝑧𝛿(𝑞 − 𝑧)𝛾(−1)𝑛𝑟𝐶2(1)𝑛𝑟 (2𝛿 +
1

2
)

𝑛𝑟
12 F (−𝑛𝑟 , 2𝛿 + 2𝛾 + 𝑛𝑟 , 2𝛿 +

1

2
, 𝑧) (33) 

where 𝐶(𝑛𝑟) is radial normalization constant , 2𝐹1 is hypergeometric function. 

 

4.2 Solution of the angular part 

For angular part in Eq.(21), can be obtain by using AIM to find orbital quantum number. 
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Equation (65) can be written as, 𝑐𝑜𝑡𝑞𝜃1 = 𝑖(1 − 2𝑧) 
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by using 

     11111 1 zfzzzY s

        (36) 

and simplying it, Eq.(35) can be transform to hypergeometric differential equation: 
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Eq. (37) is hypergeometry type Eq. and we can solve it by AIM as follow 

𝜆0 =
(𝑧1(2𝛼+2𝛽+2))−(2𝛼+1)
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       (38) 
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𝑧1(1−𝑧1)
      (39) 

one can generalize Eq. (39) 
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 (40) 

Where 𝐿 is orbital quantum number and 𝑛𝑙 is angular quantum number. From Eq.(5), we have 

𝑌(𝑧) = (−1)𝑛𝑙𝐶2(1)𝑛𝑙(𝜎)𝑛𝑙 12 F (−𝑛𝑙 , 𝜌 + 𝑛𝑙 , 𝜎, 𝑏𝑧𝑁+2)  (41) 

𝐶𝑧 is angular normalization constant. 

Solution for θ ,and θ3 can be determined by the same way with solution for θ1, And we get solution for 

orbital quantum number for θ2,and θ3 respectively as follows: 
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5. Result and Discussion 

In this section, we discuss several results which were obtained in the previous section. From 

relativistic energy equation in Eq.(30) and orbital quantum number equation in Eq.(41), and by using 

Matlab software we have numeric solution of relativistic energy are listed in Table 1 with parameters 

𝜅 = 2, 𝜂 = 2, 𝑣 = 3, 𝑞 = 2 and 𝑀 = 5 𝑓𝑚−1, the negative value of relativistic energy is taken due to 
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the pseudospin symmetric limit[19]. By inspecting Table 1, show that increase of value 𝛼 and 𝑛𝑟 in the 

same quantum state causes decrease energy eigenvalue. 

 

Table 1. Relativistic energy corresponding to several sates of a particle under the influence of modified 

Pöschl-Teller potential and trigonometric Scarf II potential. 

𝒏𝒓 𝒏𝒍 𝒌 

𝑬𝒏𝒓𝒏𝒍𝒌`
(𝒇𝒎−𝟏) 

𝜶
= 𝟎, 𝟏𝒇𝒎−𝟏 

𝜶
= 𝟎, 𝟐𝒇𝒎−𝟏 

𝜶
= 𝟎, 𝟑𝒇𝒎−𝟏 

0 0 0 -5.0805 -5.1083 -5.1411 

1 1 0 -5.0715 -5.1181 -5.1351 

2 2 0 -5.0798 -5.1289 -5.1738 

3 0 0 -5.0887 -5.1358 -5.2678 

 

By varying parameter which corresponding value 𝛿 and  𝛾, some of the radial wavefunctions are 

listed in Table 2. Radial wavefunctions for particle under the influence of modified Pöschl-Teller 

potential and Manning Rosen potential are affected by potential constants  𝜅, 𝑒𝑡𝑎, q, v and by 𝛼 .The 

parameter 𝛼 has a dimension inverse of distance in space that describes the reach of Pöschl-Teller 

potential. If 𝛼 is enlarged, physically means that the potential reach is smaller in a space. By inspecting 

Table 2, due to the increase in the value of 𝛼 causes particles move further away from the nucleus and 

show that change in radial wavefunctions are affected of potential constants  𝜅, 𝑒𝑡𝑎, q and v. 

 

Table 2. Energy eigenvalue in 𝑓𝑚−1 with 𝑛𝑟 = 2 𝑛𝑙 = 2, 𝑣 = 2, 𝑞 = 4, 𝑀 = 5, 𝛼 = 0.05 for particle 

under the influence of modified Pöschl-Teller potential and Manning-Rosen non-central potential 

variation 𝑘. 

Nr  Enr 𝐹𝑛𝑟
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6. Conclusion 

The Dirac equation in D dimensions of q-deformed trigonometric Poschl-Teller  potential combined 

with Manning-Rosen non-central potential using Asymptotic Iteration Method (AIM). The radial part 

of D- dimensions of  the Dirac equation reduces to one dimensional Schrodinger type equation in 

centrifugal approximation scheme. In the exact spin symmetric case, the relativistic energy equation 

reduces to the non-relativistic energy in the non-relativistic condition. The radial part of the 

wavefunction is obtained approximately from Eq.(33) and the angular part in Eq.(41). The results 

show that the disturbance of modified Pöschl-Teller Potential and trigonometric Manning-Rosen non-
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central potential change in the wave function of the radial part and the angular part. Relativistic energy 

equatione can be obtained via AIM in Eq.(30) and equation of orbital quantum number l in Eq.(40), 

Eq.(42) and Eq.(43), where both are interrelated between quantum numbers. Relativistic energy also is 

solved numerically using Matlab software, where the increase in the radial quantum number nr causes 

a decrease in the energy spectrum. 
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