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Abstract. Schrodinger equation for an anisotropic nonquadratic potential that modified by 

exponential form in axial part is investigated using supersymmetric approach. The three 

dimensional Schrodinger equation for an anisotropic nonquadratic potential in cylindrical 

coordinate is separated into three parts that contain one dimensional Schrödinger type equation 

which are solved using supersymmetric operator and the idea of shape invariant potential. The 

energy spectrum  and the total wave functions are obtained. 
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1.  Introduction 

Exact analytical solutions of the Schrodinger equation for some physical potential are 

important to obtain the wave function and the energy spectrum. More recently, efforts have paid 

considerably to explore potential solutions right from the central and non-central. There are only few 

potentials the Schrodinger equation can be solved exactly in the scheme of centrifugal approach. 

In recent years, many studies have analysed a bound state of a charged particle moving in a 

potential vector and scalar potential non-central location, such as an electron moves in the Coulomb 

field with the same field presence Aharonov-Bohm [1-2], or monopole magnet [3], Makarov potential 

[4] or potential-shaped ring oscillator [9/5]. Most of these research, the eigen values and eigen functions 

are determined using variable separation method in the spherical coordinate system. More recently, with 

the idea of supersymmetric quantum mechanics invariance form [10/9], factorization method [11-12], 

and Nikiforov-Uvarov method [13-14] are widely used to obtain the energy spectrum and the wave 

function of the charged particle moved in the non-central potential. 

In this paper the anisotropic nonquadratic potential which has been investigated using path 

integral method [15], the method of algebraic solutions [16], the semmiclassical treatment [17] and now 

will be investigated by using supersymmetric Quantum Mechanics (SUSY QM) [18] and the idea of the 

invariance form [19]. SUSY QM is a powerful tool for determining the energy spectrum and the wave 

functions of the form class invariance potentials [18-22]. 

Anisotropic nonquadratic potential given as [15-17] 
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Modified anisotropic nonquadratic potential with exponential potential in axial part is 

8th International Conference on Physics and its Applications (ICOPIA) IOP Publishing
Journal of Physics: Conference Series 776 (2016) 012079 doi:10.1088/1742-6596/776/1/012079

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 

 

 

 

 

 

   
   

0 31 2
422 2 22 2

1
,  , 

11

z z

z
z

V V eV V y e
V r V r z V

x ex x yx y e

 





 





      

 

 (2) 

Schrodinger equation in Eq. (2) is expressed in the three-dimensional type of the Schrodinger equation 

in cylindrical coordinate and it is solved exactly using variable separation method. Schrodinger equation 

of radial, angular, and axial parts are solved using SUSY operator and the idea of shape invariant.  

2.  Schrodinger Equation for Modified Anisotropic Nonquadratic Potential 

Schrödinger equation is defined by 

       
2
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Modified anisotropic nonquadratic potential in Eq.(2) is changed by applying cylindrical coordinates, 

and apply the operator 2  for cylindrical coordinate, with the wave function   ( ) ( ) ( )R r P zr   . The 

wave function which have variable r , , and z  can be separated with ordinary algebra method. 

So the Schrodinger equation that has been separated may be written by 
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 Angular part 
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 Radial part 
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3.  Solution to The Three Dimensional Schrodinger Equations with SUSY QM Method  

Supersymmetry quantum mechanics is used to solve one dimensional Schrödinger equation 

with any shape invariance potentials. After has been separated into three parts, each part of  Schrodinger 

equation would be solved using SUSY QM to find the wave functions and energy spectra . 

3.1.  Solution of Axial Part 

The Schrödinger equation for axial part (Eq. 23) is changed into hyperbolic function. Assume 

that 
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1'E    so Eq.(4) can be resolved into 

Schrödinger equation with the effective potential is Manning Rosen-like potential 
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We hypothesize that the superpotential is given by 
0 coth( , )o

B
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Where ( )V z  is the effective potential. So we get the superpotential, super-partner potentials and ground 

state energy are 
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A pair of potentials ( )V z  in Eqs.(8) are said to be shape invariant if they are similar in shape but 

different in the parameters and this condition is given as, 

 (13) 

where j = 0,1,2,.., and a is a parameter in our original potential. The energy eigenvalue of the 

Hamiltonian H  is given by 
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and by using Eqs.(14) and (13) we get the energy spectra of the system given as,  
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So we get the first separation variable constant is 
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The raising and lowering operator for axial part are given by 
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Using the lowering operator Eq.(18) and applying  
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So we get the ground state of wave function is 
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The first excited wave function is given by 
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With 0 1, 1,..., na a a n        so we can get the next excited wave functions of axial part by 

using raising Eq.(17) and lowering Eq.(18) operator and applying Eqs.(14) and (21). 

3.2.  Solution of Angular Part 

1 1( ; ) ( ; ) ( )j j jV z a V z a R a    
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The potential of Schrodinger equation for angular part is changed by  
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To find solution of angular part, we put the same method like in the subsection 4.1. We have to define 

the superpotentials, 
0 ( )  tanA B    , by using Eqs.(8) and (13-14) we get the ground state energy 

for angular part and the energy spectra are given by 
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So the second variable constant is 
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The raising and lowering operator for angular part are given by 

0A ( , )= ( 1) tan
( 1)2 2 2

d q
a v

d vm m m
 



    


 (27) 

0A( , )= ( 1) tan
( 1)2 2 2

d q
a v

d vm m m
 


  


 (28) 

Using the lowering operator Eq.(28) and applying Eq.(19) we get the ground state of wave function is 
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And the first excited wave function for angular part is 
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With 0 1, 1,..., na v a v a v n      so we can get the next excited wave functions by using raising 

Eq.(27) and lowering Eq.(28) operator and applying Eq.(21). 

3.3.  Solution of Radial Part 

Radial part in Eq.(6) must reduce into Schrödinger equation by assumed that U
R

r
 and then 

we change the form of the potentials with 2

0V e , so the effective potential in radial part becomes 

Coulomb-like potential and we assumed that 
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Schrödinger equation, given as 
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We hypothesize that the superpotential for the radial part is 
0 ( )

A
r B

r
   , by using the same method like 

subsections 1 and 2 so we get the ground state energy and the energy spectra for radial part are given by  
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So we get the energy spectra of the system is 

 
 

 

2 2 4
22

2 22
2

2 2

2

1
2 1 1

2 ( 1)
( 1) 2

z

z

r

q me
E v n

m v n q
v n n

v n







 
     

     
     

  
 

 (34) 

The energy spectra of an anisotropic non-quadratic potential expressed in (Eq. 2) is given in (Eq. 57). 

There are two parts of the energy spectra, the first part is associated with the axial part of the potential, 

and the second part is associated with radial and polar parts of potential. Without the presence of axial 

part of potential, the energy spectra reduces to the energy spectra of Coulomb-like potential that is 

modified by the presence of the angular potential. 

The raising and lowering operator for radial part are given by 

22

0

2

1
22

122

2

A ( , )=
2

m e

rm

d
r a

drm





  





  (35) 

0

22

2

1
22

12
A( ,

2
)

2

=
2

d
r a

dr

e

rmm

m












 (36) 

Using the lowering operator Eq.(27) and applying Eq.(19) we get the ground state of wave function is 
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And the first excited wave function for radial part is given by 
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With 
0 2 1 2 2, 1,..., na a a n        so we can get the next excited wave functions by using 

raising Eq.(35) and lowering Eq.(36) operator and applying Eq.(19). The total wave functions, the un-

normalized ground state and first excited state ones, are obtained from Eqs.(20,22), Eqs.(29-30) and 

Eqs.(37-38) given as 
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with 2  expressed in (Eq. 26) respectively. 
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4. Conclusion  
By applying a cylindrical coordinate system, the Schrödinger equation for the anisotropic 
nonquadratic that modified by exponential form in axial part reduces to a perfectly variable separable 
Schrödinger equation. Three dimensional Schrödinger equation reduces to one radial Schrodinger 
equation, one angular Schrodinger equation, and one axial Schrodinger equation. These three one 
dimensional Schrödinger equation are exactly solvable since each of Schrödinger equation with shape 
invariant potential. By using SUSY Quantum Mechanics method and the idea of shape invariance the 
energy spectra are calculated and so the total wave functions which are combination of axial, angular 
and radial parts.  
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