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Abstract.The non-relativistic energies and wave functions of extended hyperbolic Scarf I plus 

separable non-central shape invariant potential in four dimensions are investigated using 

Supersymmetric Quantum Mechanics (SUSY QM) Approach. The three dimensional separable 

non-central shape invariant angular potential consists of trigonometric Scarf II, Manning Rosen 

and Poschl-Teller potentials. The four dimensional Schrodinger equation with separable shape 

invariant non-central potential is reduced into four one dimensional Schrodinger equations 

through variable separation method. By using SUSY QM, the non-relativistic energies and radial 

wave functions are obtained from radial Schrodinger equation, the orbital quantum numbers and 

angular wave functions are obtained from angular Schrodinger equations. The extended potential 

means there is perturbation terms in potential and cause the decrease in energy spectra of Scarf 

I potential. 

1. Introduction 

It is well known that the exact solution of non-relativistic Quantum Mechanic for some physical 

potentials are very important since they provide all necessary information for certain quantum system. 

Finding an exact solution of Schrodinger equation for some real potentials, that have been applied in 

molecular physics, solid state and chemistry areas, have been explored intensively by using various 

methods. Recently, conciderably efforts have been paid to obtain the exact solution of mixture potentials 

include Killingbeck [1] Sextic and octic [2], extended Cornell [3-4], and Killingbeck in external field 

[5-7,10] potentials. The bound state energy spectra of these potentials have been investigated by various 

techniques such as SUSY QM [11-12,16-18], wave function ansatz method [2,6-7,9-10], Nikiforov-

Uvarov method [3-4,8,13], and Lie Algebra approach [1]. For l wave, the Schrodinger equation is only 

solved approximately with suitable approximation scheme for centrifugal term [14]. 

Furthermore, the extension in higher dimensional spaces for some physical problems is very important 

in some physics area. The D dimensional system has been constructed to explain the unification of 

gravitation and electromagnetic fields [9]. It is suspected that the dimensional system is applicable for 

gravitation field since it is involved in such huge universe. The D-dimensional non-relativistic and 

relativistic physical systems have been investigated by many authors, Killingbeck potential[1], Poschl-

Teller and Manning Rosen non-central potential [12], hyperbolic tangent [13], three anharmonics 

potential [8]. 

In this paper we will attempt to solve the four dimensional Schrodinger equation for a charged particle 

moving in a field governed by an extended radial Scar I potential with simultaneous presence 
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trigonometric Scarf II, Manning Rosen, and Pöschl-Teller non-central potentials using SUSY QM with 

the idea of shape invariance. SUSY QM was developed based on Witten’s proposal [14], while the idea 

of shape invariant potentials was proposed by Gendenshtein [15], since then SUSY QM became a 

powerful tool to determine the energy spectrum and wave function of a class of shape invariant potentials 

as in Sukumar, Dutt et al., and Gangopadhyaya [16-18]. This potential can be applied to study the non- 

relativistic effect of the complex vibration-rotation energy structure of multi-electron atoms.  

This paper is organized as follows. A brief review of SUSY QM is presented in Section 2. Derivation 

of hyper-spherical Laplacian is briefly introduced in section 3, Solutions of radial and polar Dirac 

equations are presented in Section 4. The result and discussion in section 5. The conclusion is presented 

in Section 6. 

  

2. Review of the SUSY Quantum Mechanics Approach Using Operator and Shape Invariance 

According to the definition proposed by Witten [14], in a SUSY quantum system there are super charge 

operators Qi that commute with the SUSY Hamiltonian Hss and they also obey to the anti commutation 

algebra as 

 
  0, s si HQ  i = 1, 2, 3, …N    ;    s si jji HQQ ,
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SUSY QM is a one-dimensional model of SUSY field theory with N = 2, where 
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 are the SUSY partner potentials, 
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By constructing super-potential by using the condition of usual Hamiltonian H and SUSY Hamiltinian 
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and by applying the condition of shape invariant potential which is defined as           
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the energy eigen value of H  [15] and H are obtained from equation (6) given as 
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with j = 0,1,2,..; a is a mapping parameter. Based on the characteristics of the lowering and raising 

operators, the ground state and excited state wave functions are obtained from the condition that 
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The energy spectra are obtained from equations. (8-10), while the wave functions is obtained from 

equation (11).  

 

3. Coordinate System in D Dimension 

If ix s are the coordinate components of Cartesian coordinates then they can be expressed in  

hyperspherical coordinate components as r,
 1 2 1, ,..., n      in D dimensional system given as 

 1 1 2 1cos sin ...sin Dx r     ,  
2 1 2 1sin sin ...sin Dx r     ,….,

1 1cos sin ...sinb b b Dx r     , … 
  

  1 2 1cos sinD D Dx r     , and 
1cosD Dx r  
  

(12) 

 with
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By manipulating equations (12-13) it is obtained D dimensional Laplacian in hyper-spherical 

coordinates as 
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The four dimensional Schrodinger equation with separable four dimensional non-central potential in

 

hyperspherical coordinates which is obtained from equation (14) is given as 
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where the three dimensional separable trigonometric angular potential is defined as  
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and an extended (perturbed) radial Scarf I potential is     

 

2

2

2

2 2

( 1) 2 ( 1 / 2)sinh ( 1)
( )

cosh cos
2 csc

sinhh
d

f g g f g r
V r

r
h

r
r

r


  


  

       
         




  




 (18)

   with  is related to the width of radial potential f, g,  , d, b, c,  ,  ,  ,  are parameters related with 

the depth of potential. By setting
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we get four one dimensional Schrodinger equation given as
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with 1 2 3. ,  and     are variable separation constant. 

 

4. Solution of Schrodinger equation with Extended Hyperbolic Scarf I Radial  Potential Plus 

Trigonometric Non-central Potentials 

4.1. Solution of radial part of Schrodinger equation 

By using equations (13-14), setting
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By setting the hypothetical super potential for effective potential expressed in equation (20) as 
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4.2. Solution of Schrodinger for the first angular part 1  

By using equation (16-17) we get one dimensional Schrodinger equation for 1  
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By applying SUSY QM method and the idea of shape invariant given in equations (7-11) and (25)  we 

obtain

 

the superpotential

 

1( )  , variable separation constant that related to angular quantum number 

1  and ground state wave function 10P as
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 4.3. Solution of Schrodinger for angular part for 2 3and   
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By setting
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in equation (28) and applying 

equation (7-11) we obtain the superpotential 2( )  , the variable separation constant 2 which is related 

to angular quantum number and ground state wave function 20P  as
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By setting
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the superpotential 3( )  , the variable separation constant 3 and ground state wave function as    
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5. Result and Discussion 

From the solutions of four one dimensional Schrodinger equations using SUSY QM and the idea of 

shape invariant potential are exactly obtained in the scheme of centrifugal approximation. The non-

relativistic energy spectra is obtained in the close form given as  
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(37) 

The extended Scarf I potential is Scarf potential plus Manning Rosen potential. The total ground state 

wave function is given as 
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(38) 

In Table 1 below, are non-relativistic energy spectra for some value of potential constants  .   
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From Table 1 is shown that there is perturbation terms in potential and cause the decrease in energy 

spectra of Scarf I potential. 
 

Table 1. Non-relativistic energy eigenvalues of particle under the influence of Scarf I potential 


 

1 2 3nn n nE
 

0000E
 1000E

 2000E
 3000E

 4000E
 5000E

 
0 -2.4351e-37 -1.3568e-37 -5.9155e-38 -1.3947e-38 -4.9379e-41 -1.7464e-38 

2 -2.5315e-37 -1.4290e-37 -6.3956e-38 -1.6326e-38 -7.0221e-42 -1.5000e-38 

4 -3.0079e-37 -1.7920e-37 -8.8924e-38 -2.9956e-38 -2.2997e-39 -5.9549e-39 

6 -3.8472e-37 -2.4516e-37 -1.3691e-37 -5.9972e-38 -1.4345e-38 -2.8667e-41 

8 -5.0321e-37 -3.4135e-37 -2.1080e-37 -1.1156e-37 -4.3632e-38 -7.0155e-39 

 

6.
 Conclusion 

The non-relativistic energy spectra for non-central potential which is combination of extended 

hyperbolic Scarf I potential with three dimensional trigonometric angular potential is obtained in the 

closed form. The four dimensional energy spectra and wave functions depend on the variable separation 

constant, the radial and angular quantum numbers. It is worthy to explore more complicated shape 

invariant potential which is extension of the standard shape invariant potential.  
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