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Abstract. The interaction between fast particles and core turbulence has been established
as a central issue for a tokamak reactor. Recent results predict significant enhancement of
electromagnetic stabilisation of ITG turbulence in the presence of fast ions. However, most
of these simulations were performed with the assumption of equivalent Maxwellian distributed
particles, whereas to rigorously model fast ions, a non-Maxwellian background distribution
function is needed. To this aim, the underlying equations in the gyrokinetic code GENE have
been re-derived and implemented for a completely general background distribution function.
After verification studies, a previous investigation on a particular JET plasma has been revised
with linear simulations. The plasma is composed by Deuterium, electron, Carbon impurities,
NBI fast Deuterium and ICRH 3He. Fast particle distributions have been modelled with a
number of different analytic choices in order to study the impact of non-Maxwellian distributions
on the plasma turbulence: slowing down and anisotropic Maxwellian. Linear growth rates are
studied as a function of the wave number and compared with those obtained using an equivalent
Maxwellian. Generally, the choice of the 3He distribution seems to have a stronger impact on
the microinstabilities than that of the fast Deuterium.

1. Introduction
Developing a better understanding of the impact of fast particles on plasma core turbulence is
an essential task for an improved performance assessment of future fusion reactors like ITER,
where the energetic particles fraction is significant. In this work, the interaction between fast
particles and plasma core turbulence is studied in the radially local limit. Therefore, energetic
geodesic acoustic mode (EGAMs) effects will not be taken into account. However, the latter
are usually negligible in the core plasma region [1]. In this context, recent experimental and
computational results suggest positive and stabilising effects on the background turbulence,
especially on the ITG modes [2, 3], typically considered as the most limiting microinstability
in a tokamak reactor. In particular, fast ion dilution of the main ion species [4, 5], Shafranov
shift stabilisation [6] as well as linear and nonlinear electromagnetic stabilisation in the presence
of fast ions suprathermal pressure gradients [2, 7] have been proved to greatly stabilise the plasma
core turbulence. Although some previous gyrokinetic studies could already well reproduce the
experimental observation, the linear reduction of the growth rates and the nonlinear reduction
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of the main ion heat flux are somewhat too strong such that the power balance was reached with
R/LTi above the experimental values [8]. However, most of these simulations have been performed
with the assumption of equivalent Maxwellian distributed particles, whereas it is well known that
to rigorously model fast particles, a non-Maxwellian background distribution function is needed.
Indeed, anisotropies and asymmetries in the fast particles distribution functions can, in principle,
have some additional effects on the main plasma turbulence. For this reason, in this paper we
present low beta electromagnetic simulations with non-Maxwellian fast particles distribution
functions with the δf gyrokinetic code GENE [9]. The latter has been modified and generalised
in order to include any number of analytic non-Maxellian fast particles species, namely slowing
down and asymmetric and anisotropic Maxwellian, which as already mentioned, provide the most
appropriate description. Linear electrostatic benchmarks against published results [10] obtained
with GKW [11, 12] and GS2 [13, 14] are presented, which include slowing down fast particles
in the electrostatic case. Furthermore, a relatively low beta JET plasma with both NBI and
ICRH fast ions has been revised and analysed with linear simulations. Comparisons on the
linear growth rates are shown in this paper between the different fast ion distribution functions
and the previous Maxwellian results.

2. Theoretical background
2.1. Equilibrium distribution functions
All the simulations presented in this work have been carried out with the gyrokinetic δf code
GENE, which solves numerically the nonlinear coupled Vlasov-Maxwell system of equations
on a five dimensional grid for each time step. GENE can include full electromagnetic effects,
realistic collisional operators as well as experimental geometries. The background distribution
function usually considered in most of the gyrokinetic codes is a local Maxwellian (defined in
Eq.(1)). The latter is a very good approximation for all the thermalised species, however, it
lacks validity for fast particles where anisotropies and asymmetries cannot be described with
a Maxwellian distribution function. In order to describe appropriately the dynamic of non
thermalised particles, the gyrokinetic equations have been re-derived and implemented without
doing any assumption on the background distribution function in the low-beta electromagnetic
case, i.e. neglecting the parallel magnetic fluctuations (B1,q). This very flexible setup allows to
implement and use a large variety of different distribution functions and study the impact of
energetic particles on the plasma turbulence. In the present work the equilibrium distribution
function F0 for thermal electrons and ions has been modelled with a Maxwellian

F0,M =
n0

π3/2v3
th

exp

(
−mv2

q /2− µB0

T0

)
(1)

Here, m is the particle mass, T0 is the equilibrium temperature, n0 particles density and
vth = (2T0/m)1/2 is the thermal velocity. The fast particle distributions have been modelled
with a number of different analytic choices: slowing down [15] and an asymmetric and anisotropic
Maxwellian [16]. The slowing down is a solution of the Fokker-Planck equation with an isotropic
delta-function particle source and is defined as follow

F0,s =
3n0

4π log
(
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v3c

)
[v3
c + v3]

Θ (vα − v) (2)

Here, the birth velocity is defined through the birth energy Eα in the following way vα =

(2Eα/mα)1/2 , while vc = vth,e

(
3
√
πme
4

∑
main ions

niz
2
i

nemi

)1/3
represents the critical slowing down

velocity. Furthermore, Θ is the Heaviside step function. The asymmetric and anisotropic

Joint Varenna-Lausanne International Workshop on the Theory of Fusion Plasmas 2016 IOP Publishing
Journal of Physics: Conference Series 775 (2016) 012003 doi:10.1088/1742-6596/775/1/012003

2



Maxwellian distribution function is defined as follows

F0,aM =
n0 exp

(
−µB0

T0

)
π3/2 (vth,− + vth,+) v2

th,⊥

{
exp

(
−

v2
q

v2
th,−

)
[1−Θ (vq)] + exp

(
−

v2
q

v2
th,+

)
Θ (vq)

}
(3)

Here, Tq,+ and Tq,− are respectively the temperature associated to the particles with positive and
negative parallel velocity, while T⊥ is the perpendicular temperature. In the limit of Tq,+ = Tq,−
Eq.(3) reduces to the bi-Maxwellian distribution function, which is often used to model ICRH
fast ions. The latter will be used afterwards for modelling the fast ICRH ions in the linear
simulations. Furthermore, if Tq,+ = Tq,− = T⊥ Eq.(3) turns into Eq.(1). The non-Maxwellian
fast particles temperature has been defined in order to have the same kinetic pressure as the
equivalent Maxwellian distribution function [17], namely

ˆ
v2Fnon−Mdv =

ˆ
v2FMdv

In the following session the derivation of the non-Maxwellian gyrokinetic equations is presented
in the low-beta electromagnetic case.

2.2. Non-Maxwellian gyrokinetic Vlasov-Maxwell equations
In the present section the analytic derivation of the non-Maxwellian gyrokinetic equations is
revised in the low-beta electromagnetic case without doing any assumptions on the background
distribution function of the plasma species. As starting point, we write the Vlasov equation which
determines the time evolution of the gyrocenter distribution function [18] F = F

(
~X, vq, µ

)
∂F

∂t
+
[
vqb̂0 + (~vE + ~v∇B + ~vc)

]
·
{
~∇F −

[
q~∇φ̄1 +

q

c
b̂0

˙̄A1,q + µ~∇B0

] 1

mvq

∂F

∂vq

}
= 0 (4)

Here, respectively the curvature, the E × B and the ∇B drift velocities have been defined
~vC =

v2q
Ω

(
~∇× b̂0

)
⊥
, ~vE = c

B2
0

(
~B0 × ~∇ξ1

)
and ~v∇B0 = µc

qB2
0

(
~B0 × ~∇B0

)
; ξ1 represents the

modified potential ξ1 = φ̄1 − vq
c Ā1,q; Ω = qB0

m and b̂0 =
~B0
B0

. The over bar denotes gyro averaged
quantities, which in the local code approximation reduces to the mere multiplication of the
zero order Bessel function, i.e. φ̄1 = J0 (λ)φ1; Ā1,q = J0 (λ)A1,q; where λ = k⊥

Ω (2B0µ
m )1/2. In

terms of computational effort it is convenient to split the gyrocenter distribution function in an
equilibrium part F0 and a small perturbation term F1, with F1 � F0. The turbulent evolution of
the system is then determined within the so-called δf-ordering of Eq.(4) which for a field aligned
coordinate system can be rewritten in terms of the metric coefficients gij = ∇ui · ∇uj (with
ui = (x, y, z), x radial direction, y poloidal direction, z toroidal direction) in the following way
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1
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= 0 (5)

a modified distribution function g1 = F1 − q
mcĀ1,q

∂F0
∂vq

has been introduced. C is defined below.
In order to solve numerically Eq.(5) we need to derive a dimensionless equation. With this aim,
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all the physical quantities have been split into a dimensionless value and a dimensional reference
part. The reference value used to normalise Eq.(5) are the elementary electron charge e, the
main ions mass mi and temperature Ti, a reference magnetic field Bref and a macroscopic length
Lref . The normalised Vlasov equation for a completely general background distribution function
can be written as

∂g1

∂t
= − C
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where we have defined the following geometrical coefficients Kx = − 1
C

(
∂yB0 − γ3

γ1
∂zB0

)
,

Ky = 1
C

(
∂xB0 − γ3

γ1
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)
, γ1 = g11g22 − g21g12, γ3 = g12g23 − g22g13 and C = B0/γ

1/2
1 ;

the normalised background pressure gradient ωp = −Lref
∂xp0

nrefTref
and the reference thermal to

magnetic pressure ratio βref = 8πnrefTref
B2

ref
. If the equilibrium distribution function F0 is chosen to

be a local Maxwellian, one can show that Eq.(6) reduces to the well-known gyrokinetic equation
known in literature see, e.g., Ref.[18].

2.3. Velocity space moments
In order to treat self-consistently our fluctuating system it is necessary to derive the fluctuating
component of the electromagnetic fields from the perturbed distribution function. In this section
the evaluation of the general moment of the perturbed distribution function

Ma,b (~x) =

ˆ
f (~x,~v) vaq v

b
⊥d

3v

is established. Since, from the Vlasov equation we can evaluate the time evolution of the
gyrocenter distribution function it is convenient to transform the integrand of the general velocity
moment equation in terms of the gyrocenter coordinates:

Ma,b (~x) =

ˆ
δ
(
~X + ~r − ~x

)
T ∗F1

B0

(
~X
)

m
vaq v

b
⊥d

3Xdvqdµdθ

where ~r is the gyroradius vector and T ∗ is the pull back operator, which acts on the perturbed
distribution function in the following way

T ∗F1 = F1 +
1
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{(
Ω
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}
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Performing the integrals over θ and ~X it is straightforward to show that the generic moment of
our gyrocenter distribution function can be reduced to

Ma,b (~x) =
2π

m

ˆ
B0 (~x)

{
〈F1 (~x− ~r)〉+

1

B0 (~x)

[(
Ω
∂F0

∂vq
− q

c
vq
∂F0

∂µ

)
·
(
~A1 (~x)−

〈
~̄A1 (~x− ~r)

〉)
+

+q
(
φ1 (~x)−

〈
φ̄1 (~x− ~r)

〉) ∂F0

∂µ

]}
vaq v

b
⊥dvqdµ (7)

Here, the brackets 〈. . .〉 denote the θ integrated function, i.e. gyroaveraged quantities. In case
of a background Maxwellian distribution function, the generic moment equation can be greatly
simplified. Indeed, the terms that multiply the vector potential cancel and the vq-integration can
be performed analytically.

2.4. Field equations
The Poisson equation and the Ampere’s law for both the parallel and perpendicular component
of the electromagnetic potential can be written in terms of the M0,0 and M1,0 moments of the
perturbed distribution function

∇2
⊥φ1 (~x) = −4π

∑
j

qjn1,j (~x) = −4π
∑
j
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−∇2
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∑
j
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4π

c
qjM1,0,j (~x)

where we used the following Cartesian coordinate system
(
ê1, ê2, b̂0

)
.

From Eq.(7) the normalised non-Maxwellian field equations become

Pφ1 (~x) + FA1,q (~x) = qπn0B0

ˆ
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B0vth
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It is worth noting that for a completely general background distribution function the field
equations constitute a system of coupled equations. This system decouples if a Maxwellian
distribution function is chosen.

3. Linear simulations
In this paragraph linear electrostatic benchmarks are shown with GS2 and GKW for slowing down
fast particles to verify the results shown in the previous section. Furthermore, the relevance of
fast particles on the ITG turbulence in a JET hybrid scenario [8] and low magnetic shear (ŝ = 0.5)
has been studied with linear simulations.
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3.1. Verification
Linear electrostatic benchmarks have been carried out with the gyrokinetic code GS2 and GKW
in order to prove the correctness of the derivation and implementation of the non-Maxwellian
Vlasov-Maxwell system of equations. Both these codes have published results from simulations
with a slowing-down equilibrium distribution function for a single fast particle species [10]. In
this paragraph, growth rates as a function of the fast particle concentration and the alpha particle
diffusivity as a function of the electron temperature are shown in Fig.(1) for the same reference
case as the one studied in Ref.[10], i.e. cyclone base for a Deuterium, electron and alpha particle
plasma. The input parameters are briefly summarised in the following table. As can be seen
from Fig.(1) the agreements between codes is excellent. These results prove the validity of both
the analytic calculation and the numerical implementation.

ŝ q Te/Ti R/LTi R/LTe R/Lne r/a R/a

0.8 1.4 1.0 6.0 6.0 3.0 0.5 3.0

(a) (b)

Figure 1: (a) GENE (red line) and GS2 (black line) growth rates as a function of the α particles density concentration
plotted in logarithmic scale. (b) GENE (cyan line), GS2 (blue line) and GKW (magenta cross) α particles diffusivity for
slowing down distribution function and GENE (black line), GS2 (red line) α particles diffusivity for equivalent Maxwellian
distribution function normalised to the diffusivity of thermal helium plotted in logarithmic scale.

3.2. Microinstability study including more realistic background
In this section a particular JET plasma is revised and analysed with linear simulations [8]. The
bulk plasma is composed by Deuterium, electron and Carbon impurities, while the fast particles
are fast Deuterium (from NBI) and 3He (from minority heating). The fast ion background
distribution function has been modelled with a slowing down, an equivalent Maxwellian and
with an asymmetric and anisotropic Maxwellian, in order to study the impact of non Maxwellian
background distribution functions on the ITG instability. Low beta electromagnetic effects,
collisions, impurities, fast ions, and experimental geometry are included. In the following tables
the background plasma and magnetic geometry as well as the fast particles parameters are
summarised.
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ŝ q Te/Ti R/LTi R/LTe R/Lne βe [%] ν∗

0.5 1.7 1.0 10 6.8 1.3 0.33 0.038

nfD n3He TfD T3He R/LTfD R/LT3He R/LnfD R/Ln3He

0.06 0.07 9.8 6.9 3 20 13 1.5

3.2.1. Slowing down background In order to study the impact of the fast ion background
distribution on microinstabilities in a realistic scenario, we performed linear simulations with
five species, modelling the fast particles with a slowing down (defined in Eq.(2)). In Fig.2 linear
growth rates are shown for four different cases: equivalent Maxwellian fast particles, slowing
down fast particles, slowing down fast Deuterium - Maxwellian 3He and without fast particles
(3 species).

Figure 2: Linear growth rates as function of kyρi for equivalent Maxwellian fast particles (blue line); Slowing down fast
particles (yellow line); Slowing down fast Deuterium - equivalent Maxwellian 3He (green line); without fast particles (red
line).

The electromagnetic stabilisation is stronger for the equivalent Maxwellian fast ions
simulations, whose growth rates are ∼ 50% lower than the slowing down ones. The most unstable
mode is slightly shifted to higher ky for the slowing down case, matching the ky related to the
most unstable mode in the three species simulation. From the comparison between the slowing
down fast Deuterium - equivalent Maxwellian 3He and the both slowing down fast particles
growth rates, it is possible to see that the main difference arises when the 3He is modelled with
a slowing down distribution. The slowing down fast Deuterium results are slightly more stable
than the equivalent Maxwellian ones, while the 3He has an opposite behavior. Slowing down 3He
growth rates are much more unstable than the ones carried out using an equivalent Maxwellian.
However, a slowing-down distribution function is most likely a poor approximation for the 3He
species.

3.2.2. Bi-Maxwellian background In this section we compare the results carried out with the
equivalent Maxwellian and the bi-Maxwellian distributions. The latter can be carried out from
Eq.(3) in the limit of Tq,+ = Tq,− and is considered as a first order approximation for the ICRH-
driven fast 3He [19]. The 3He profiles, i.e. both temperatures and temperature gradients, were
extracted from the SPOT/SELFO code [20, 21]. In Fig.3 linear growth rates are shown as a
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function of kyρi for five species simulations. The fast Deuterium is modelled with the equivalent
Maxwellian distribution function, while for the fast 3He we used the bi-Maxwellian distribution
function.

Figure 3: Linear growth rates as function of kyρi for equivalent Maxwellian fast particles (blue line); Slowing down fast
particles (red line); equivalent Maxwellian fast Deuterium - Bi-Maxwellian 3He (green line); without fast particles (yellow
line).

As can be seen in Fig.3 the strength of the electromagnetic stabilisation is decreased when
modelling the 3He distribution with the bi-Maxwellian. The growth rates are higher than the
equivalent Maxwellian ones. In particular, it is worth noting that the difference between the
equivalent Maxwellian and bi-Maxwellian growth rates increases with ky. From Fig.2 and Fig.3
it is possible to observe that the 3He background distribution has a much stronger effect on the
plasma mictroturbulence than that of the fast Deuterium.

4. Conclusions
The gyrokinetic turbulence code GENE has been modified and extended in the low-beta
electromagnetic case in order to treat any number of non-Maxwellian fast particle species. In
particular, slowing down and asymmetric and anisotropic Maxwellian fast particles can now be
studied. In order to test and verify the implementation, linear electrostatic benchmarks have
been shown for slowing down fusion born alpha particles with existing data from the gyrokinetic
codes GS2 and GKW. After these verification studies, a previous equivalent Maxwellian study
on a particular JET plasma with fast ion enhanced electromagnetic stabilisation has been
revised and analysed with linear simulations. The bulk plasma is composed by Deuterium,
electron and Carbon impurities, while the fast particles are NBI fast Deuterium and ICRH
3He. Electromagnetic effects, collisions and experimental geometry have been included. In this
context, linear growth rates are studied as a function of the wave number and compared with
those obtained using an equivalent Maxwellian. It has been found that also with the more
realistic distribution function the increased EM-stabilisation with fast ions still holds, even if
the strength of the effect with ICRH is slightly weaker. Furthermore, a lack of sensitivity to the
NBI fast ion distribution has been observed. Generally, it has been found that the choice of the
3He background distribution has a stronger impact on the linear results than the fast Deuterium
background. These results would be in line with the previous nonlinear findings where gradients
higher than the nominal ones had to be employed in order to match the experimental heat fluxes
[7, 8]. A corresponding nonlinear analysis will be performed in the near future.
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