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Abstract. Interaction of two charged pointlike macroparticles located at nodes of simple cubic
(sc), body-centered cubic (bcc) and face-centered cubic (fcc) lattices in an equilibrium plasma
is studied within the linearized Poisson–Boltzmann model. It is shown that the boundary
shape has a strong influence on the electrostatic interaction between two macroparticles, which
switches from repulsion at small interparticle distances to attraction as it approaches the half-
length of a computational cell. It is found that in a case of dust particles arranged in the nodes
of the sc, bcc and fcc lattices, the electrostatic force acting on them is equal to zero and the
nature of the interaction changes from repulsion to attraction; hence, the infinite sc, bcc and
fcc lattices of charged dust particles are thermodynamically stable at rather low temperatures.

1. Introduction

In the framework of the Poisson–Boltzmann model using the Cassini coordinates, Gundienkov
and Yakovlenko [1] numerically studied the interaction of two macroparticles placed in a finite
size cell with a outer boundary of a Cassini oval shape. The electric force exerted on a
macroparticle by the other macroparticle was determined using the Maxwell stress tensor. It
was found that under certain conditions there is an effect of attraction between two similarly
charged macroparticles at distances close to the half Debye radius. It was shown [2–7] that within
the Poisson–Boltzmann model in an infinite cell there is no attraction between similarly charged
point particles (see, also [8–10]). In [7,11], the electrostatic interaction of two macroparticles was
considered for calculation cells of spherical, cylindrical and ellipsoidal forms and the attraction
between similarly charged macroparticles was found at interparticle distances close to the Debye
radius. The present paper is devoted to studying the influence of external boundary shapes on
the interaction of two charged pointlike particles in an equilibrium plasma within the Debye-
Hückel approximation [12]. Outer boundary shapes corresponding to two adjacent to each other
Seitz–Wigner cells of the simple cubic (sc), body-centered cubic (bcc) and face-centered cubic
(fcc) lattices are considered.

2. Solution of the Poisson equation for axially symmetric outer boundary

Definition of an axially symmetric shape of the outer boundary using two adjoined Wigner–
Seitz (WS) cells for the problem of interaction of two pointlike macroparticles is shown in figure
1 (definition of the WS cell is in [13, 14]). All physical quantities including the electric field
potential are symmetrical about the planes shown in figure 1 by dashed lines, therefore the
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Figure 1. The Wigner–Zeits cell and the computational cell for the problem of electrostatic
interaction of two macroparticles in a crystal with the simple cubic lattice (Rc = L/

√
π). The

dashed lines indicate symmetry planes on which the normal component of the electric field
strength is equal to zero.

normal derivative of the electric field potential on these planes is equal to zero. In a case of
macroparticles arranged in nodes of the sc lattice, the WS cell is a cube of edge length a which
equals the distance between the nearest neighbor macroparticles: L = a; the WS cell volume
Vsc = L3. The WS cell for the fcc lattice is a rhombic dodecahedron, which has 12 faces of
the rhombic form with the ratio of diagonals equal to 1 :

√
2 and with side b =

√
3a/4. Here

and further a is the cube edge length of the unit cell of the sc, fcc and bcc lattices. In the
case of the fcc lattice the distance between the nearest neighbor macroparticles is defined by
L = a/

√
2 and the WS volume Vfcc = L3/

√
2. The WS cell of the bcc lattice is a truncated

octahedron produced by 6 quadratic faces and 8 faces in the form of regular hexagons. The sides
of the squares and the regular hexagons are the same and are determined from b = a/

√
8, the

distance between the nearest neighbor macroparticles given by L = a
√
3/2 and the WS volume

Vbcc = 4
(

L/
√
3
)3
.

The Wigner–Seitz method, in which the WS cell is replaced by a sphere of the same volume, is
widely used in the solid state physics [13]. For the problem under consideration, it is required to
consider two adjacent to each other WS cells of two nearest neighbor macroparticles. Therefore,
to simplify the problem on the analogy of the Wigner–Seitz method we select the axially
symmetric shape of the computational cell based on the condition that in any cross section
by a plane perpendicular to the axis z the area of the cross sections of the computational cell,
πR2

z (z), and of the two nearest neighbor WS cells, S (z), are equal to each other:

Rz (z) =
√

S (z)/π.

The length of the radius-vector to the outer boundary point in the spherical coordinate system
with the origin at the point O (see figure 2) is defined by Rb =

√

R2
z + z2. This is the

implicit relation which determines the function Rb(µ). For the sc lattice, the computational
cell is a cylinder with the radius Rc = L/

√
π and the height equal to 2L, for the bcc and fcc

lattices the computational cell is bounded by more complex surfaces of revolution (see figure 2).
The geometry of the interaction of two macroparticles in an equilibrium dusty plasma and
dependencies of the radius of cross sections by (x, y)-plane of the computational cell at z are
shown in figure 2 for the sc, bcc and fcc lattices and for the spheroid with the volume equal to
2L3.

In this paper we consider the interaction of two macroparticles of small radii: kDa1 ≪ 1,
kDa2 ≪ 1, where a1, a2 are their radii. We define the self-consistent potential of charged
macroparticles and equilibrium plasma using the linearized Poisson–Boltzmann equation [12]

∆φ+ k2Dφ = 0, (1)
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Figure 2. Geometry of the problem of the two-particle interaction with the outer boundary
in the shape of a cylinder with radius Rc (1 ) for the sc lattice, axisymmetric surfaces with the
varied radius Rz(z) of cross sections for bcc (2 ) and fcc lattices (3 ), and a spheroid (4 ). Here,

rz =
√

x2 + y2, Rc = L/
√
π, Rell = L/

√
α, α = 2

3π, p1 + p2 = R, R is the interparticle distance,
q1 and q2 are the charges of macroparticles in elementary charges, P is the field point.

where kD is the inverse Debye radius:

k2D = 4πe2
(

ni0

Ti
+

ne0

Te

)

,

ne0 and ni0 are the number densities of electrons and ions, respectively, in the unperturbed
plasma, and Te, Ti are their temperatures in energetic units.

We apply the following boundary conditions (i = 1, 2):

∂φi (ri, θi)

∂ri

∣

∣

∣

∣

ri=ai

= −eqi
a2i

, (2)

and the condition on the outer boundary, which is due to the symmetry of the problem under
consideration:

En (r, θ)|r=Rb(θ)
= 0, (3)

where En is the normal component of the electric field strength on the outer boundary defined
by the equation r = Rb (θ). Condition (3) provides the quasi-neutrality of the computational
cell. From conditions (2), it is seen that the electric field potential is defined up to a constant
which is physically meaningless (for more details see [7]).

The problem is linear, so the solution of equation (1) can be found as a superposition of three
terms:

φ (r, θ) = φ1 (r1) + φ2 (r2) + φ3 (r, θ) , (4)

where φ1 is the screened potential of the first macroparticle in infinite plasma, which will ensure
the fulfillment of condition (2) for i = 1; φ2 is the screened potential of the second macroparticle
in infinite plasma, which will ensure the fulfillment of condition (2) for i = 2; φ3 is the potential
of additional bulk charges, which will ensure the fulfillment of condition (3).
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Considering the cylindrical symmetry of problem (1) with boundary conditions (2) and (3),
the solutions for potential components (4) can be written in the following forms [7, 15]:

φi (ri) = Ai

K1/2 (kDri)√
kDri

, i = 1, 2;

φ3 (r, µ) =

∞
∑

n=0

Cn

In+1/2 (kDr)√
kDr

Pn (µ) ,

(5)

where In+1/2, Kn+1/2 are the modified Bessel functions of the first and third kind, respectively
[16], and Pn are the Legendre polynomials. The coefficients A1 and A2 according to (2) are
defined by the following relations [7]:

A1 =
√

2
π eq1kD, A2 =

√

2
π eq2kD. (6)

Boundary condition (3) can be rewritten in the form:

(n · ∇φ)|r=Rb
= 0, (7)

where n is the normal to the outer boundary. For the axisymmetric outer boundary, the normal
is given by

n = nrer + nθ sin θeθ; (8)

where er, eθ are the orthogonal unit vectors of the spherical coordinate system (see figure 2)
and

nr =
Rb

√

R2
b + (∂Rb/∂θ)

2
, nθ =

∂Rb/∂µ
√

R2
b + (∂Rb/∂θ)

2
,

µ = cos θ. Let us expand the boundary condition (7) in Legendre polynomials

∞
∑

k=0

DkPk (µ) = 0, k = 0, 1, 2, . . . , (9)

where the expansion coefficients Dk are determined from

Dk =
2k + 1

2

1
∫

−1

(n · ∇φ)|r=Rb
Pk (µ) dµ. (10)

From equation (9), owing to the linear independency of the Legendre polynomials, it follows
that Dk = 0 for all k = 0, 1, 2, . . .. Hence, from equations (8) and (10), we obtain

Dk =
2k + 1

2

1
∫

−1

(

nr
∂φ

∂r

∣

∣

∣

∣

r=Rb

− nθ
1− µ2

Rb

∂φ

∂µ

∣

∣

∣

∣

r=Rb

)

× Pk (µ) dµ ≡ 0, k = 0, 1, 2, . . . . (11)

Let us introduce the definitions (i = 1, 2):

Ei,r = −∂φi

∂r
= ek2Dqi

(1 + r̃i)

r̃3i
e−r̃i

[

r̃ − (−1)ip̃iµ
]

,

Ei,θ = −1

r

∂φi

∂θ
= (−1)iek2Dqi

(1 + r̃i)

r̃3i
e−r̃i p̃i sin θ.
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Here q1 and q2 are the charges of macroparticles in elementary charges, r̃ = kDr, r̃1 = kDr1,
p̃1 = kDp1, r̃2 = kDr2, p̃2 = kDp2, r1 =

√

r2 + p21 + 2p1rµ, and r2 =
√

r2 + p22 − 2p2rµ. For the
components of the field strength at the outer boundary, we now have:

Er|r=Rb
= E1,r|r=Rb

+ E2,r|r=Rb
− ek2D

∞
∑

n=0

CnPn (µ)
∂

∂R̃b





In+1/2

(

R̃b

)

R̃
1/2
b



 ,

Eθ|r=Rb
= E1,θ|r=Rb

+ E2,θ|r=Rb
+ ek2D

∞
∑

n=0

Cn

In+1/2

(

R̃b

)

R̃
3/2
b

(

1− µ2
)1/2 ∂Pn (µ)

∂µ
.

(12)

We introduce the following definitions:

Irkn =
2k + 1

2

1
∫

−1

nrPkPn
∂

∂R̃b





In+1/2

(

R̃b

)

R̃
1/2
b



 dµ, (13)

Iµkn = −2k + 1

2

1
∫

−1

n (Pn−1 − µPn)Pk
nθ

R̃b

In+1/2

(

R̃
)

R̃
1/2
b

dµ; (14)

I irk =
2k + 1

2

1
∫

−1

(1 + r̃i)

r̃3i
e−r̃i

∣

∣

∣

∣

r=Rb

nr

[

R̃b − (−1)ip̃iµ
]

Pkdµ, (15)

Iiµk = (−1)i
2k + 1

2

1
∫

−1

(1 + r̃i)

r̃3i
e−r̃i

∣

∣

∣

∣

r=Rb

p̃inθ

(

1− µ2
)

Pkdµ. (16)

Using these definitions from equation (11) for the potential expansion coefficients Cn we obtain
the system of equations:

∞
∑

n=0

aknCn = bk, k = 0, 1, 2, . . . , (17)

where akn =
(

Irkn + Iµkn
)

and bk = q1

(

I1rk + I1µk

)

+ q2

(

I2rk + I2µk

)

.

If the size of the macroparticles can be neglected, the force acting on any chosen macroparticle
is determined by the electric field strength at the point of the location of this macroparticle
(i = 1, 2, j = 3− i):

Fij = −eqi





∂φj

∂rj

∣

∣

∣

∣

rj=R

+
∂φ3 (r, µ)

∂r

∣

∣

∣

∣r=pi
µ=(−1)i



 . (18)

Here, we consider that according to boundary conditions (2), the residual electric field of the
i-th (i = 1, 2) macroparticle after the subtraction of its Coulomb field at the point of its location
is equal to zero.

3. Numerical simulation results and discussion

Numerical simulations are performed for macroparticles with the equal charges q1 = q2 and for
p1 = p2 = 1

2R (here R is the interparticle distance). Figure 3 presents the two-dimensional
distributions of the total potential φ (r̃z, z̃) and the potential of bulk charges φ3 (r̃z, z̃) in the
computational cell for the bcc lattice. Here r̃z = kDrz, z̃ = kDz.
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(a) (b)

Figure 3. Two-dimensional distributions of the total potential φ (a) and the potential of bulk
charges φ3 (b) in the computational cell for the bcc lattice at kDL = 3, Rc = L/

√
π, R = L,

nmax = 50.

From figure 3a, one can see that the total potential reaches extreme values (the minimum for
the positive charges q1 and q2) only on the outer boundary and inside the cell there is only a
saddle point at the origin point O. From figure 3b, it is evident that an additional bulk charge
for positive charges q1 = q2 > 0 is negative (the additional charge density is determined from
̺3 = −k2Dφ3/4π), and its density increases as we approach the computational cell boundary.

Figure 4 presents the dependence of the interaction force of two point macroparticles on the
interparticle distance for the case of the computational cell of the cylindrical form with different
half-lengths L. We see that the interaction force at small interparticle distances, kDR ≪ 1, is
close to the Debye force defined by the equation

FD =
e2q1q2
R2

(1 + kDR) exp (−kDR) . (19)

It is notable that the interaction force is repulsive at intermediate distances R ∼ 1
2L, exceeds

the Debye force and passes through the maximum, the height of which decreases with increasing
the computational cell length.

The interaction force dependencies for the case of the computational cell in the spheroid form
with the volume equal to two volumes of the WS cell of the sc lattice are presented in figure 5.
One can see that the interaction force is less than the Debye force at all interparticle distances
and the repulsion between the macroparticles changes to attraction at distances R ≈ 4

5L. Note
that at R = L, the attraction between the macroparticles in the spheroid is strong.

From figure 4 we see that the interaction force between the macroparticles located in the
nodes of a simple cubic lattice (i.e., when R = L) is equal to zero. The interaction force at this
point passes through zero, changing the nature of the interaction from repulsion to attraction.
Thus, the electrostatic interaction potential has a minimum at R = L. This suggests that the
system of macroparticles located at the nodes of the sc lattice in the equilibrium plasma should
be mechanically stable, i.e. thermodynamically stable at sufficiently low temperatures.

Figure 6 shows the interaction force dependence at different radii of the cylindrical cell (in
this case, the volume of the computational cell is certainly different from that of two SW cells
unless the cylinder radius is equal to L/

√
π). It is clear that both the increase and the decrease

in Rc hardly change the positions of equilibrium points of the macroparticles. If the conditions
a1 ≪ L and a2 ≪ L are fulfilled, considering the finite size of the macroparticles does not
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Figure 4. Interaction force as a function of
the interparticle distance R for Rc = L/

√
π,

nmax = 50 at different lengths of the sc lattice:
curve 1 is for kDL = 1, 2 for kDL = 2, 3 for
kDL = 3, 4 for kDL = 4, and 5 for kDL = 5;
6 is the Debye dependence and symbols are
data calculated from (20).

Figure 5. The interaction force as a function
of R for the computational cell in the form of
the spheroid (ellipsoid of revolution with s =
1), α = 2π/3. Curve 1 is for kDL = 1, 2 for
kDL = 2, 3 for kDL = 3, 4 for kDL = 4, and
5 for kDL = 5; 6 is the Debye dependence.

Figure 6. Interaction force vs R at different
Rc for kDL = 1 (curves 1 ) and kDL = 2
(curves 2 ) for nmax = 50. The solid curves are
calculated for Rc = L/

√
π, the dashed lines

for Rc = L/2 and the dot-and-dash lines are
for Rc = L, 3 is the Debye dependence.

practically change the interaction force at distances R ∼ L, because the size of macroparticles
is affected only at distances R ∼ min (a1, a2) (see [17–20] and the literature cited in them).

The interaction force dependencies for the computational cells of the sc, bcc and scc lattices
are presented in figure 7 at kDL = 2 and kDL = 4. In insertions in this figure, regions of the
sign change of the interaction force are shown in an enlarged scale.

Considering the symmetry of the problem under consideration in the case of location of the
macroparticles at the nodes of the sc, fcc and bcc lattices, it is evident that the interaction force
becomes equal to zero at R = L. The problem considered in the present paper corresponds
to the problem of interaction of an ensemble of macroparticles arranged so that a change
in the interparticle distance between two selected particles does not change the shape of the
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(a) (b)

Figure 7. The interaction force as a function R for the computational cells of sc, bcc and scc
lattices at kDL = 2 (a) and kDL = 4 (b). Regions near the point R = L are shown in an
enlarged scale in insertions.

computational cell. Only for the computational cell of the sc lattice this may be achieved by
placing macroparticles at the points with coordinates xi = ia, yj = ja, zk = ka if k = 2ℓ and
zk = (k − 1) a+R if k = 2ℓ+1. Here i, j, k, and ℓ are the integers (0,±1,±2, . . .). To determine
the force acting on any macroparticle in the ensemble of macroparticles interacting by the Debye
potential we have:

FΣ = −e2q2
∂

∂R

(

∑

i

∑

j

∑

k

1

rijk
e−kDrijk

)

, (20)

where

rijk =
√

x2i + y2j + z2k.

Symbols in figure 4 present the dependencies of the interaction forces on the interparticle
distance, which were calculated from (20) (the data for kDL = 3 and kDL = 4 are not shown to
order of avoid overloading the figure). We see a good agreement of these results with the data
obtained on the basis of numerical solution of equation (17). Thus we can conclude that the
interaction of any pair of macroparticles is described by the Debye potential and the total force
acting on any chosen macroparticle is determined by the spatial distribution of macroparticles.

The good agreement of the results obtained by the numerical solution of system (17) with the
data calculated from (20) also leads to the conclusion that the method proposed in the present
paper for solving the boundary value problems is fairly accurate and can be used for the solution
of similar problems having a complex shape of the outer boundary.

4. Conclusion

In the present paper, the interaction of two charged pointlike macroparticles embedded in the
finite size cells in an equilibrium plasma is studied. The calculations show that the shape of the
outer boundary has a strong influence on the electrostatic interaction of two macroparticles and
the interaction force switches from repulsion at small interparticle distances to attraction as the
interparticle distance approaches the half-length of the computational cell. It is found that in
the case of the computational cell corresponding to two adjacent WS cells of the simple cubic
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lattice the electrostatic force acting on any macroparticle is determined by the Debye interaction
of this macroparticle with all the other macroparticles. This allows us to conclude that the pair
interaction potential of macroparticles in an equilibrium plasma is the Debye potential.
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