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Abstract. In general terms, we have considered matter as the system of charged particles and
quantized electromagnetic field. For consistent description of the thermodynamic properties of
matter, especially in an extreme state, the problem of quantization of the longitudinal and
scalar potentials should be solved. In this connection, we pay attention that the traditional
postulates of electrodynamics, which claim that only electric and magnetic fields are observable,
is resolved by denial of the statement about validity of the Maxwell equations for microscopic
fields. The Maxwell equations, as the generalization of experimental data, are valid only for
averaged values. We show that microscopic electrodynamics may be based on postulation of the
d’Alembert equations for four-vector of the electromagnetic field potential. The Lorenz gauge
is valid for the averages potentials (and provides the implementation of the Maxwell equations
for averages). The suggested concept overcomes difficulties under the electromagnetic field
quantization procedure being in accordance with the results of quantum electrodynamics. As
a result, longitudinal and scalar photons become real rather than virtual and may be observed
in principle. The longitudinal and scalar photons provide not only the Coulomb interaction of
charged particles, but also allow the electrical Aharonov–Bohm effect.

1. Introduction

For the thermodynamic parameters corresponding to the usual state of matter, as well as for
the extremal parameters, especially, the consecutive consideration of thermodynamic properties
of substances is directly related with investigation of the equilibrium system, consisting charged
particles and quantized electromagnetic field. The appropriate consideration is the object
of quantum electrodynamics which based on the perturbation theory on interaction between
charged particles and quantized electromagnetic field (see, e.g., [1, 2]). Application of the
perturbation theory is possible due to existence of the small parameter e2/~c. However, the
essential problem of quantization of the longitudinal and scalar potentials of electromagnetic
field in quantum electrodynamics still exists (for details see, e.g., [3]). For this reason, in
thermodynamic and kinetic applications, for temperatures T ≪ ǫ0 (where ǫ0 is the rest energy of
particles), instead the original system one consider the “model” system, consisting the quantized
transversal electromagnetic field (photons) and non-relativistic charged particles interacted by
the Coulomb low (see, e.g., [4]). Wherein, to use the electrostatic potential one proceed from
the concepts of classical electrodynamics, where the Coulomb low is valid for the particle
velocities small in comparison with the light speed [5]. However, in quantum electrodynamics
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interaction between charged particles is carried out via electromagnetic field and the velocity of
this interaction propagation cannot be dependent on the charged particle velocities. It is clear
on the example of the interaction between charged particles and the transversal electromagnetic
field (photons). Thus, for the fully consistent description of thermodynamic (as well as kinetic)
properties of matter it is necessary to solve the problem of the longitudinal and scalar potentials
quantization. We assume that the solution of this problem is directly related with the Aharonov–
Bohm (AB) effect [6, 7]. The essence of this effect is the influence of the electromagnetic field
on the charged particle (or on a particle with the magnetic moment) in the space region, where
the field strength equals zero, but the vector and/or scalar electromagnetic potentials possess a
nonzero value.

The problem of physical reality of the electromagnetic potentials is one of the fascinating
questions of electromagnetism. Although the paper by Aharonov and Bohm [6](see also [7]) was
published more than 50 years ago, various aspects of the AB effect still attract great attention
up to now [8–16]. Most studies, including experimental researches, are devoted to the magnetic
AB effect (see, e.g., [17]).

However, in recent years the interest in the electric AB effect has significantly increased
(see [13,18,19] and references therein) due to different interpretations of the experiments [20,21].
Furthermore, taking into account an analogy between electrostatic and gravitational interactions
the problem of experimental detection of gravitational analog of AB effect arises [22].

Electric AB effect concerns the basic concepts of the electromagnetic field gauge theory [23].
Since the magnetic field is completely defined by the transverse part of the vector potential, the
magnetic AB effect does not depend on the gauge invariance of the electrodynamic equations [24].
At the same time, the electric AB effect is in obvious contradiction with electrodynamics
postulates.

One of the main arguments against the physical reality of the electromagnetic potential is the
fact that they depend on the gauge choice. The physical reality of some variable means that its
average value (at least for some ranges of the parameters and arguments, this variable depends
on) can be determined uniquely by means of some experiment. In most cases it is necessary to
use a theory (always approximate) for the transition (or conversion) from a directly measured
variable to the sought physically real variable. From a purely theoretical point of view we can
consider some variable as physically real if it possesses a single-valued operator representation
and carries physically valued information. It is necessary to stress that there is a well-marked
difference between the microscopical variables (the variables represented in an operator form)
and their averaged (macroscopic) values which only can be found from the experiments, if these
variables are physically real. In brief, the average values of the physically real variables are
referred to as observable.

The gauge invariance is known to be associated with the property of the Maxwell stress
tensor of the electromagnetic field being unchanged when adding a four-dimensional gradient
∂χ/∂xµ of an arbitrary scalar function χ of space–time coordinates. The requirement of
relativistic invariance slightly narrows the arbitrariness in the choice of this function (the so-
called Lorenz gauge). Using the Lorenz gauge creates significant problems in electromagnetic
field quantization, since the electromagnetic potential components become dependent on each
other (see, e.g., [3]). However, if only the electromagnetic field (i.e., electric and magnetic field
strengths) is accepted as a physical reality, then the requirement for relativistic invariance of the
potential seems to become excessive. Therefore, the Coulomb and other obviously non-covariant
gauges are used in many studies.

A question arises why the fields (rather than the potentials) are considered to be real? It is
easy to see that the reason is the “tacit” assumption that Maxwell equations for microscopic fields
are valid (see, e.g., [5], chapter 4). However, the Maxwell equations (which are generalizations
of available experimental data on the macroscopic behavior of systems of charged particles and
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associated with finite propagation velocity of the interaction between them) are valid only for
averaged (or observed) values of dynamic variables (operators in quantum electrodynamics)
entering in these equations.

2. Quantum description and the Lagrangian choice

Due to linearity of the Maxwell equations, the “tacit” assumption of the validity of these
equations for dynamic variables (in operator form) naturally leads to their validity for average
values as well. However, the opposite statement is not necessarily valid. The requirement of
the fulfillment of this assumption follows neither from experimental data nor from the logical
construction of the theory itself.

The only requirement for microscopic fields is that the corresponding equations of motion
satisfy the Maxwell equations after the averaging procedure. Indeed, constructing microscopic
electrodynamics, we should not be restricted to the introduction of electromagnetic field
strengths only, but we are “forced” to take into consideration the field potentials to describe
the field interaction with charged particles [5]. One of the key features of Maxwell equations is
absence of longitudinal waves in vacuum (i.e., the absence of waves whose electric field vector is
collinear to the wave vector). Nevertheless, longitudinal and scalar photons are used in quantum
electrodynamics to describe the Coulomb interaction of charged particles (see, e.g., [25]). These
photons are considered as “nonphysical” (virtual), since, otherwise, the microscopic Maxwell
equations become invalid. However, as follows from the above consideration, there is no need
for the requirement of the validity of the microscopic Maxwell equations.

The following question then arises: what can be proposed instead? Quantum electrodynamics
gives a factual answer to this question. Within the concept of the free electromagnetic field, it is
quite natural to postulate that the microscopic four-vector potential of the electromagnetic
field satisfies the d’Alembert equation [25] (chapters II, VII). In order that this equation
would correspond to macroscopic Maxwell equations, it is necessary to require the validity
of the Lorenz gauge condition, but only for average (observed) values of the four-potential of
the electromagnetic field. However, this condition is completely consistent with the modern
results of quantum electrodynamics from the viewpoint of the above mentioned difficulties in
electromagnetic field quantization [3,25]. In this case, the Lorenz condition for averages is only
indicative of the choice of feasible quantum states, providing the independence of longitudinal
and scalar photons in their microscopic description.

As a result, the fundamental difference in our interpretation of quantum electrodynamics is
reduced to the statement that longitudinal and scalar photons are quite physical, rather than
virtual. Their “non-physical” character only means that they “are absent” in the macroscopic
Maxwell equations for the free electromagnetic field. However, the Maxwell equations themselves
are not unique from the viewpoint of the description and manifestation of electromagnetic field.
In this sense, the analogy between the Klein–Gordon and Dirac equations is relevant: the former
is used to determine Dirac matrices. However, the Dirac equation does not follow from the
Klein–Gordon equation (see, e.g., [25]).

Instead of the d’Alembert equation for the four-vector potential of the electromagnetic field,
we can postulate, following to Fock and Podolsky [26], the corresponding Lagrangian for the
system of charged particles and electromagnetic field

L = −
1

16π

∑

µ,ν

(

∂Aµ

∂xν
−

∂Aν

∂xµ

)

2

−
1

8π

∑

µ

(

∂Aµ

∂xµ

)

2

+
∑

µ

(

jµAµ

c

)

, (1)

where Aµ ≡ (ϕ,A) is the four-vector operator of the electromagnetic potential. The Lagrangian
(1) is valid also for the quantum description of particles and electromagnetic field. The expression
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(1) implies that the Lorenz gauge, as well as any other relation between the Aµ operators and
their derivatives, is absent.

It should be kept in mind that it is not a single Lagrangian providing the validity
of d’Alembert equation. However, the Fock–Podolsky Lagrangian provides the “required”
quantization procedure of the electromagnetic field and its interaction with charged particles
(described by the Dirac equation). Furthermore, the Lagrangian of the free electromagnetic
field is not completely defined by the Maxwell stress tensor.

Then, how can we explain the fact that many results of applying gauge quantum
electrodynamics lead to equivalent results using various gauges, first of all, the Lorenz and
Coulomb ones (see, e.g., [27])? This is due to the so-called “heuristic” quantization proposed by
Feynman [28] (see [29] for more details). Calculating the radiative corrections to scattering,
Feynman drew attention to the fact that scattering amplitudes of elementary particles are
independent of the reference frame and gauge choice. In fact, the gauge choice became a formal
procedure of choosing gauge-invariant field variables. However, the range of application of
heuristic quantization is limited only by the problem of elementary particle scattering, where
this quantization appeared. The elementary particle scattering does not exhaust the problems
of quantum electrodynamics (see, e.g., [30, 31]).

3. D’Alembert equations as the conceptual basis of quantum electrodynamics

Our concept may be formulated as follows: microscopic values of the vector potential A and
scalar potential ϕ, forming in quantum case the four-vector operator Aµ, satisfy d’Alembert
equations

1

c2
∂2A

∂t2
−∇2A =

4πj

c
,

1

c2
∂2ϕ

∂t2
−∇2ϕ = 4πρ, (2)

or in covariant form
DAµ = 4πjµ. (3)

where jµ ≡ (ρ, j/c) is the four-vector of the charge current and D is the d’Alembert operator

D ≡
1

c2
∂2

∂t2
−∇2 ≡ ∂µ∂µ, (4)

∂µ =

(

∂

∂ct
,∇

)

, ∂µ =

(

∂

∂ct
−∇

)

. (5)

In the brackets the time and space components of the four-vector divergence operator are
placed. Due to linearity of the d’Alembert equations (2), (3) they are also valid for the average
values 〈Aµ〉 and 〈jµ〉. In the framework of quantum electrodynamics [25] the quantized free
electromagnetic field should satisfy the homogeneous d’Alembert equations (2),(3) (in absence
of charges)

DAν = 0. (6)

However, for realization of the non-contradicted quantization of the free (vacuum)
electromagnetic field it is necessary to fulfill the Lorenz gauge for the averages 〈Aµ〉 (see in
detail [3, 5, 13])

∂µ〈Aµ〉 = 0. (7)

The essential point is the requirement that the Lorenz condition (7) should be satisfied not
for the microscopic values of the four-vector Aµ, as it is traditionally accepted in quantum
electrodynamics in the so-called Lorenz gauge [5], but only for the average values 〈Aµ〉. The
components of the microscopic four-vector Aµ are to be considered independently in the
quantization procedure of the vacuum electromagnetic field. The Lorenz condition (7) leads only
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to limitations in choice of the state vectors of the electrodynamic system under consideration.
Since the condition (7) is evidently independent on whether or not charges are present it can
be postulated also in the presence of charged particles. The Maxwell equations for the average
fields then follow directly from d’Alembert equations (2), (3) and equation (7) for averages.

Taking into account that the average values of the electric and magnetic fields 〈E(r, t)〉 and
〈H(r, t)〉 are determined by

〈E〉 = −
1

c

∂〈A〉

∂t
−∇〈ϕ〉, 〈H〉 = ∇× 〈A〉, (8)

Maxwell equations for the averaged 〈Aµ〉 take the form

D〈Aµ〉 − ∂µ (∂α〈A
α〉) = 4π〈jµ〉. (9)

Using condition (7) we arrive at the d’Alembert equations for the average values 〈Aµ〉

D〈Aµ〉 = 4π〈jµ〉. (10)

These equations correspond to the averaged initial equations (2), (3) for the microscopical values
of the potentials.

4. Conclusions

The use of Maxwell equations for microscopic description of electromagnetic field can not be
considered as axiom. Instead, we discussed the hypothesis that quantum electrodynamics (and,
consequently, thermodynamic and kinetic properties of the system of charged particles and
electromagnetic field [32]) may be constructed basing on microscopic d’Alembert equation (3)
for 4-vector electromagnetic potential.

As is shown, the averaged microscopic equation (3) used together with the Lorenz gauge
(7), formulated only for averages, yields the traditionally accepted Maxwell equations for
averaged electromagnetic fields and, hence, all results of the conventional electrodynamics.
However, there are advantages of the suggested hypothesis and description. First, we are able
to overcome difficulties associated with the electromagnetic field quantization, which is the
quantization procedure facilitated. Therefore, the gauge problem and respective uncertainty of
the microscopic description of the electromagnetic potentials disappears. Second, longitudinal
waves (quanta of the electromagnetic potential Aµ) in vacuum are not forbidden anymore.
Namely, the d’Alembert equations for potentials (A, ϕ) in vacuum are satisfied by solutions in
the form of both transversal and longitudinal waves. As a result, longitudinal and scalar quanta
of electromagnetic potentials (in contrast with scalar and longitudinal photons) may become real
(rather than virtual as within conventional electrodynamics), and as such can being in principle
observable.

To summarize:

(i) The formalism considered above eliminates the necessity to postulate the relation between
the electromagnetic potential operators Aµ and, therefore, avoids the known difficulty of
QE. According to the presented concept, the Lorenz gauge is valid only for the averages
potentials;

(ii) This formalism extends the class of observable physical variables. In particular, the
existence and observation of the longitudinal and scalar quanta of electromagnetic potentials
are possible in parallel with the transversal quanta of the electromagnetic field (photons).
Hence, the theoretical basis for experimental manifestation of the electromagnetic potentials
is formulated. Evidently, experimental investigations of the additional observable variables
(see, e.g., [20–22]) can lead to interesting practical findings;
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(iii) The proposed microscopic basis of QE reproduces all known effects in QE, as well as the
Maxwell equations for averages. At the same time, the Maxwell equations for microscopic
variables (operators) of the electromagnetic fields do not exist, contrary to the usual
theoretical formalism.
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