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Abstract. A prospective hypersonic HEXAFLY aircraft is considered in the given paper. In
order to obtain the aerodynamic characteristics of a new construction design of the aircraft,
experiments with a scaled model have been carried out in a wind tunnel under different
conditions. The runs have been performed at different angles of attack with and without
hydrogen combustion in the scaled propulsion engine. However, the measured physical quantities
do not provide all the information about the flowfield. Numerical simulation can complete the
experimental data as well as to reduce the number of wind tunnel experiments. Besides that,
reliable CFD software can be used for calculations of the aerodynamic characteristics for any
possible design of the full-scale aircraft under different operation conditions. The reliability of
the numerical predictions must be confirmed in verification study of the software. The given
work is aimed at numerical investigation of the flowfield around and inside the scaled model of
the HEXAFLY-CIAM module under wind tunnel conditions. A cold run (without combustion)
was selected for this study. The calculations are performed in the FlowVision CFD software.
The flow characteristics are compared against the available experimental data. The carried out
verification study confirms the capability of the FlowVision CFD software to calculate the flows
discussed.

1. Introduction

After the design of the experimental hypersonic vehicle has been determined, experiments with
a scaled model of the vehicle have been carried out in a wind tunnel. The runs proceeded at
different angles of attack without burning hydrogen in the combustion chamber of the model
and with burning. Numerous publications are dedicated to hypersonic flows. The physical
phenomena accompanying such a flow and different mathematical models describing these
processes are discussed in detail in monograph [1]. The goals of the given work are twofold:
numerical investigation of the flow around the scaled HEXAFLY model in the wind tunnel
and verification of the FlowVision software. The peculiarity of the numerical statement of the
problem is that the computational domain is bounded by the walls of the wind tunnel duct, the
external and internal surfaces of the model as well as by the surface of the holder. Hence, the
calculations of the flow past the model take into account the effects of the wind tunnel walls
and the model holder. A cold run (without hydrogen combustion) is simulated. Since the Mach
number developed in the wind tunnel is relatively low (about 7), a simplified model of the physical
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processes is used in the calculations discussed. The model does not allow for nonequilibrium
chemical reactions in the high-temperature regions. The computed aerodynamic characteristics
of the model are compared against the available experimental data. The agreement is good,
therefore, the Flow Vision software can be used for calculations of the flow around the full-scale
vehicle under real flight conditions.

2. Mathematical model
The following equations are integrated in the FlowVision software. The continuity equation:
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here ¢ is time, p is the fluid density, V is the flow velocity. The momentum equation:
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where p is the static pressure, G is the gravity acceleration, 7 is the effective shear stress tensor,
p is the dynamic coefficient of viscosity, ¢ is the dynamic coefficient of turbulent viscosity, S is
the deformation rate tensor, I is the unit tensor. The energy equation:
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where H is the total enthalpy, hy(298.15) is the enthalpy of formation of the working fluid at
298.15 K, C,(T) is the specific heat at constant pressure, T is the absolute static temperature,
jq is the specific heat flux, A is the coefficient of thermal conductivity, Pr; is the turbulent
Prandtl number.
System (1)—(3) is completed by the ideal gas state equation and the equations for the turbulent
characteristics. “Standard’ k—¢ turbulence model [2] is used in the current calculations. The
equations and algebraic expressions describing the model are as follows:
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here x; is a Cartesian coordinate, V; is the i-th component of velocity, k is the turbulent energy, €
is its dissipation rate, 3 is the coefficient of thermal expansion, a is the speed of sound, C, = 0.09
is a fixed model constant. The default values of the other model constants are as follows:

op=1 o0.=13 C.=144, Cp=192, =15 My =0.25. (6)
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Constants £ and My define the model accounting for the fluid compressibility. The above-
mentioned values define the Wilcox model. Values £ = 1, My = 0 define the Sarkar model.
Both models are discussed in [2]. Note that in FlowVision, a user can specify arbitrary values
of constants (6).

Computations were performed on relatively coarse grids. For this reason, FlowVision model
of wall functions [3] was used in the cells adjacent to solid boundaries.

3. Numerical method

The FlowVision software allows a user to calculate different flows of gases and liquids in complex
3D domains. Numerical integration of the governing equations is based on the finite volume
approach. FlowVision contains an automatic grid generator. This is an important advantage of
the software, since in most CFD codes manual building a computational grid takes up to 90%
of flow simulation time.

Another important advantage of FlowVision is the sub-grid geometry resolution (SGGR)
method developed for generation of computational cells near curvelinear boundaries of the
computational domain. The method assumes natural truncation of a hexahedral cell by a
triangulated curvelinear boundary followed by Boolean subtraction of the volume found outside
the domain from the parent cell. In doing so, the boundary cell transforms to a polyhedron.
Thus, the internal cells are hexahedrons, the boundary cells are polyhedrons of arbitrary shape
determined by the local shape of the boundary. In all the cells, the governing equations
are approximated by a high-order numerical scheme. The solution in the regions with high
gradients of sought-for variables and around fine geometric features can be improved by means
of automated local dynamic adaptation. Note that in FlowVision, adaptation by one level means
division of a hexahedral cell (parent cell) by 8 equal cells.

A new implicit velocity-pressure split algorithm [4] is used for solving the Navier—Stokes
equations. Solution of the other convection-diffusion equations, constituting the mathematical
model, is synchronized with solution of the Navier—Stokes equations. The algorithm assumes
using the conservative velocities at cell faces, obtained at the given time step, in the convection
terms of all the convection-diffusion equations. The method is compatible with technologies
of moving boundaries. Besides that, method [4] enables integration of the partial differential
equations at large Mach numbers with time steps essentially exceeding the explicit time step.

The algorithm is summarized below.

Stage 1. Solve pressure equation:
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indices n and n + 1 indicate two sequential time layers, index ¢ indicates the value of a quantity
in the cell center, index f indicates the value of a quantity at a cell face, At is a time step, €2, is
the volume of a given cell, Sy is the area of a given cell face, V}, is the velocity projection onto
the external normal n} to the given cell face, dp/On is the static pressure derivative along the
normal.
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Stage 2. Compute density p?*?
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Stage 3. Compute the normal mass velocities at the cell faces:
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where W"J - p"HVﬁfl is the normal component of the specific mass flow rate at a cell face.
Stage 4. Solve the momentum equation:
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Stage 5. Solve the other convection-diffusion equations constituting the mathematical model
of the flow (turbulence, energy, etc) using the same values Wit L

The new split algorithm is implemented in the FlowVision CFD software in such a way that
calculations at a time step (stages 1-5) can be repeated when a transient problem is solved and
time accuracy is required. In doing so, temperature 77! is substituted into (8) at each such
iteration.

4. Formulation of the problem in FlowVision software

The scaled model of the HEXAFLY vehicle used in the experiments is shown in figure 1. The
model is mounted in a wind tunnel equipped with a conical supersonic nozzle. The entire
geometry is symmetric with respect to the vertical plain passing through the axis of symmetry of
the nozzle and wind tunnel chamber. This allows one to save computational resources performing
calculations in a half-space. Figure 2 demonstrates the flow-through part of the wind tunnel and
the HEXAFLY model installed inside it. It also shows the specified boundary conditions. Inlet
to the nozzle 3 is subsonic. Here total pressure pg = 64 atm and total temperature Ty = 2310 K
are specified. These values correspond to the experimental conditions. The working substance is
the gas mixture composed of the combustion products of methane (CHy). Its properties (molar
mass, specific heat at constant pressure, viscosity and thermal conductivity) are calculated
assuming thermo-chemical equilibrium at fixed values of static pressure (p) and temperature
(T') and specified as tables of 7" and p. The aforementioned inlet conditions provide the Mach
number equal to 7 at the nozzle outlet. This is the flow which encounters the model. The
supersonic outlet condition is specified behind the model at surface 4. The symmetry condition
is specified at the mirror plane. The walls (surfaces 1 and 2) are assumed to be adiabatic. The
non-slip condition is specified at the walls.

In the experiments, the gas mixture composed of No, Os, CHy is supplied to the wind tunnel
inlet, the mass flow rates being: Gn, = 4.864 kg/s, Go, = 4.701 kg/s, Gey, = 0.581 kg/s.
Methane completely burns in the region between the nozzle inlet and the critical section. Further
the gas mixture composed of No, Og, COg, HyO flows through the nozzle and encounters the
model. The mass fractions of the components are: Yy, = 0.479, Yo, = 0.234, Yco, = 0.157,
Yh,0 = 0.130. The Mach number at the outlet from the wind tunnel nozzle is 7.

In calculations, the aforementioned mixture of gases Na, O, CO9, H2O is supplied to the
wind tunnel inlet. The mixture properties are computed assuming thermochemical equilibrium
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Figure 1. Scaled model of the HEXAFLY vehicle: (a) general view, (b) mirror plane section.
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Figure 2. Boundary conditions: 1—walls of the nozzle and wind tunnel chamber; 2—walls of
the HEXAFLY model and support; 3—inlet; 4—outlet.

with use of data from handbook [5]. The properties are represented as tables of static pressure
and static temperature. The free stream Mach number at the forward edge of the model equals
to 6.5, the corresponding flow velocity being 2400 m/s. The free stream static pressure is 630 Pa,
the free stream static temperature is 330 K. The model length, width and height respectively are:
2.88 m, 0.4 m, 0.385 m. The length-based Reynolds number approximately equals to 4.3 x 105.

Apparently, not taken into account nonequilibrium effects may decrease the accuracy of the
numerical predictions. However, since the free stream Mach number is relatively low, this
decrease should not be essential.

Different grids were used in preliminary calculations. The results discussed below are obtained
on two grids generated as follows. The initial computational grid is uniform. The size of initial
cells is 0.1 m. The grid is refined in the wind tunnel nozzle and around the model. Three types
of adaptation are specified: adaptation in the volume of a geometric primitive (up to the 3-rd
level), adaptation near the model surfaces (4 and 8 layers of the 5-th level cells for the first
and second grids respectively) and adaptation to solution around the model, viz., adaptation
to the gradients of the static pressure and temperature (up to the 5-th level). Remind that
in FlowVision adaptation by one level assumes division of a parent hexahedral cell by 8 equal
parts and that the cells adjacent to the curvelinear boundaries of the computational domain are
polyhedrons of arbitrary shape. The dimension of the first grid was limited from above by 4
million cells, the dimension of the second grid was limited by 8 million cells. As a result, the first
grid built in the course of calculations contains about 3.2 million cells, the second one contains
about 7.1 million cells. Figure 3 illustrates the structures of the grids around the forward part
of the model and the structure of the second grid around the model and holder. The second
grid better resolves the pressure field and the shocks compared to the first one.

It is worthwhile to emphasize that such a grid is variable until the steady-state solution is
reached: the cells are split and merged in the course of development of solution.

The integration time step is determined by the specified CFL number:

At = CFLAtey, CFL = 10. (12)
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Figure 3. Computational grid: (a) first grid, adaptation around the leading edge of the
HEXAFLY model (4 layers of the 5-th level); (b) second grid, adaptation around the leading
edge of the HEXAFLY model (8 layers of the 5-th level); (c) second grid around the model and
holder.

The explicit time step is computed as follows:

0.5h; h2
Ateypr = min | —mi P (13)
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where h; is the size of the i-th cell, |17Z|, ai, pi, [4, Pt are, respectively, the velocity modulus,
the speed of sound, the density, the viscosity and the turbulent viscosity in the cell center. In
the calculations discussed below, time step At was approximately equal to 3.7 x 1077 s.

5. Calculations

Figures 4-6 demonstrate the distributions of the Mach number, static pressure and static
temperature in the mirror plane. Figure 7 shows the alignment bars of the pressure gauges
installed over the model surface. The static pressure distributions along the alignment bars of
the pressure gauges are shown in figures 8 and 9.

The pressure peaks observed in the figures are due to the presence of the pylon for hydrogen
supply in this region. As we see, the agreement between the numerical and experimental
data is good. At certain points the calculated values lay precisely on the experimental ones.
Most calculated results are found within 20% band around the experimental data. In general,
the computed pressure profile repeats the experimental one. However, some splashes are not
reproduced by calculations. Besides that, there is a minor displacement between the profiles.
There are several possible reasons for this displacement. The first reason is the triangulated
geometrical model used in the calculations. Apparently, it does not precisely reproduce the shape
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Figure 6. Distribution of static temperature in the mirror plane, K.

Figure 7. Arrangement of the pressure gauges over the surface of the HEXAFLY model:
1—central alignment bar of the pressure gauges; 2—side alignment bar of the pressure gauges.

of the model used in the experiment. The second possible reason consists in 3D effects which are
observed in the experiments and are not taken into account in the calculations performed in a
half-space. Minor disagreement between the numerical and experimental data can be produced
by the simplified physical model which does not allow for non-equilibrium phenomena: as it was
mentioned above, the working fluid composed of gases No, Oy, CO2 and H50 is assumed to be
under thermo—chemical equilibrium. Thus, the conditions specified in the calculations, do not
coincide precisely with the experimental ones. Nevertheless, the flow pattern obtained in the
calculations agrees well with that observed in the experiments.
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Figure 8. Distribution of static pressure along the central alignment bar of the pressure gauges,
bar (line 1 in figure 7).
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Figure 9. Distribution of static pressure along the side alignment bar of the pressure gauges,
bar (line 2 in figure 7).

6. Conclusions
The work is dedicated to numerical investigation of the flow around a scaled HEXAFLY model
in a wind tunnel and to verification of the FlowVision CFD software. A cold run (without
hydrogen combustion) was selected for this study. The peculiarity of the study consists in
taking into account the effects of the wind tunnel walls and the model holder. The calculations
provided the velocity, pressure and temperature fields around and inside the HEXAFLY model.
The calculations adequately reproduced the flow observed in the experiments. The agreement
between the numerical and experimental data is good.

The carried out verification study indicates that the FlowVision CFD software can be used
in systematic calculations of the aerodynamic characteristics of full-scale models of hypersonic
vehicle HEXAFLY under different operation conditions.
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