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Abstract. The CABARET method implementation for a weakly compressible fluid flow is
in the focus of present paper. Testing both one-dimensional pressure balancing problem and
a classical plane Poiseuille flow, we analyze this method in terms of discontinuity resolution,
dispersion and dissipation. The method is proved to have an adequate convergence to an
analytical solution for a velocity profile. We also show that a flow formation process represents
a set of self-similar solutions under varying pressure differential and sound speed.

1. Introduction

Numerical simulations being an inalienable part of hydrodynamical studies can either possess
an inherent value when solving classical problems of computational fluid dynamics (CFD) and
testing new mathematical methods or support experimental investigations providing optimal
parameters for laboratory facilities. Despite computational power constant increase the actual
efficiency of CFD algorithms crucially depends on numerical scheme chosen and the scale of
parallelism. It were Samarskii and Goloviznin [1] which gave rise to the novel numerical scheme
(the CABARET method) representing a new approach to simulate fluid flows dominated by
convective transfer including shock-wave propagation, aeroacoustics, vortex and turbulent flows
and thermal convection. The CABARET method [2] is based on a single-cell space-time pattern
providing formally second-order flow approximations unless nonlinear correction procedure is
required. The nonlinear correction algorithm employs the maximum principle for local Riemann
invariants to suppress oscillations efficiently. The CABARET numerical scheme solves governing
equations explicitly both for strong shock and weak acoustic waves without any fudge factors
and does not need any iterative procedures. Its remarkable properties are conditioned by a
superset of variables, that includes the so-called “flux-type variables” (related to the centers of
cell facets) along with the usual “conservative” variables and in some cases causes 4-fold increase
of computer memory size requirements.

The approach considered further provides a competitive alternative [3] to well-known second-
order total variation diminishing (TVD) schemes (such as Roe upwind scheme with Van Leer’s,
MinMod, SuperBee or Tishkin’s [4] upwind biased limiters) when resolving shock waves and
expansion fans in the one-dimensional gasdynamic problems. Studying the evolution of the
sinusoidal velocity profile [2] in a wide range of Courant numbers showed that the CABARET
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scheme does not generate any unphysical discontinuities in a smooth profile, unlike standard
TVD (SuperBee, MinMod and Tishkin’s) methods.

The present paper is focused on the CABARET scheme testing for the weakly compressible
fluid to confirm its features claimed by the developers.

2. One-dimensional formulation

There are several different implementations of the CABARET method developed for gasdynamic
flows, incompressible fluids in which the equations are solved in pressure–velocity [5] or vorticity–
stream function [6] formulations. Besides that, the number of invariants transferred over the
mesh differs. Actually, weakly compressible fluid model falls in between foregoing ones, allowing
to simplify local invariants selection algorithm and also to avoid solving Laplace equation for
pressure.

2.1. General algorithm discussion

This section provides a detailed description of the CABARET algorithm for one-dimensional
problems, as well as for the isothermal plane viscous fluid flow. Our further treatment is intended
to reduce the number of disambiguations associated with the algorithm implementation, as also
to draw an attention to some interesting aspects.

Let us write the homogeneous equations in the divergent form corresponding to continuity
and momentum equations in a one-dimensional formulation:

∂ρ

∂t
+

∂ρu

∂x
= 0, (1)

∂ρu

∂t
+

∂ρu2

∂x
+

∂p

∂x
= 0, (2)

complemented by the barotropic equation of state for weakly compressible fluid

p = c2(ρ− ρ0),
dρ

dp
=

1

c2
. (3)

One can reformulate the above equations so that the k-th equation will contain directional
derivatives in the plane (x, t) of the form

∂

∂t
+ λk

∂

∂x
. (4)

If such a conversion is possible for simultaneous linear and quasi-linear equations and the
determinant of coefficients matrix at derivatives (4) is nonzero, they are called hyperbolic [7]:

~φT = (ρ, u, v), (5)

∂~φ

∂t
+Ax

∂~φ

∂x
= 0, (6)

∂ρ

∂t
+ u

∂ρ

∂x
+ c2ρ

∂u

∂x
= 0, (7)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0, (8)

Ax =

(

u c2ρ
1/ρ u

)

. (9)
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Eigenvalues of Ax are different real numbers:

λx
1 = u+ c, λx

2 = u− c, (10)

so that Ax satisfies an alternative definition [2] of hyperbolic system. The transposed
eigenvectors matrix have the following form:

Ωx =

(

1/ρc 1
−1ρc 1

)

. (11)

Thus, homogeneous simultaneous equations are shaped into:

∂Ixk
∂t

+ λx
k

∂Ixk
∂x

= 0, k = 1, 2, (12)

where Ixk denotes Riemann invariants:

Ix1 = u+ c ln(p(ρ) + c2ρ0), Ix2 = u− c ln(p(ρ) + c2ρ0). (13)

At this point one can raise a question if it’s possible to use Taylor series expansion in (13) due to
the obvious relation between terms c2ρ0 >> |p| in a real fluid. Such a transformation proposed
in the original monograph yields

Ix1 = u+
p

c2ρ0
, Ix1 = u−

p

c2ρ0
. (14)

In fact, this operation can conceal an uncertain risk when an automatic selection of the sound
speed is used to maintain current step Mach number being M ≤ 0.1.

Hereafter the index i denotes the points in X direction, whereas n numerates time layers,
i+1/2 is referred to flux-type variables, n+1/2 relates only to the conservative variables of the
intermediate time layer.

To determine conservative variables at a new time layer one need to perform following main
stages:

(i) an initialisation of conservative variables at internal points of the computational domain
and flux-type variables at the edges with respect to boundary conditions, followed by the
interpolation of adjacent flux variables;

(ii) time step calculation grounded stability condition for explicit method

τ = CFL∆xmax(|λx
1 |, |λ

x
2 |),

where CFL = 0.15 < 1 denotes Courant number;

(iii) conservative variable calculation at the intermediate (n+ 1/2)-layer utilising homogeneous
equations

[R]
n+ 1

2

i+ 1

2

− [R]n
i+ 1

2

τn+ 1

2

/2
+

[ρu]ni+1 − [ρu]ni
∆xi+ 1

2

= 0, (15)

[RU ]
n+ 1

2

i+ 1

2

− [RU ]n
i+ 1

2

τn+ 1

2

/2
+

[ρu2 + p]ni+1 − [ρu2 + p]ni
∆xi+ 1

2

= 0. (16)
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(iv) Next one should calculate first two invariants transported through the cell in the X-direction
basing known n-layer flux-type variables and (n− 1/2)-layer conservative variables:

[I1x]
n
i = c ln([p]ni + c2ρ0) + [u]ni , [I1x]

n
i = −c ln([p]ni + c2ρ0) + [u]ni ,

[I1x]
n+ 1

2

i = c ln([p]
n+ 1

2

i + c2ρ0) + [u]
n+ 1

2

i , [I2x]
n+ 1

2

i = −c ln([p]
n+ 1

2

i + c2ρ0) + [u]
n+ 1

2

i .
(17)

After that we extrapolate these invariants to (n+ 1)-transient layer:

λx
1 = u+ c > 0, [Ix1 ]

n+1
i = 2[Ix1 ]

n+ 1

2

i− 1

2

− [Ix1 ]
n
i−1, (18)

λx
2 = u− c < 0, [Ix2 ]

n+1
i = 2[Ix2 ]

n+ 1

2

i+ 1

2

− [Ix2 ]
n
i+1, (19)

and correct them according to the maximum principle:

[Ixl ]
n+1
i =











[Ixl ]
n+1
i , if min(Ixl ) ≤ [Ixl ]

n+1
i ≤ max(Ixl )

min(Ixl ), if [Ixl ]
n+1
i < min(Ixl )

max(Ixl ), if [Ixl ]
n+1
i > max(Ixl )

, l = 1, 2, (20)

where

max(Ix1 ) = max
{

[Ix1 ]
n
i−1, [I

x
l ]

n
i− 1

2

, [Ixl ]
n
i

}

, min(Ix1 ) = min
{

[Ix1 ]
n
i−1, [I

x
1 ]

n
i− 1

2

, [Ixl ]
n
i

}

, (21)

max(Ix2 ) = max
{

[Ix2 ]
n
i+1, [I

x
1 ]

n
i+ 1

2

, [Ix1 ]
n
i

}

, min(Ix2 ) = min
{

[Ix2 ]
n
i+1, [I

x
2 ]

n
i+ 1

2

, [Ix2 ]
n
i

}

. (22)

(v) The invariants found yield flux variables [u]n+1
i ,[p]n+1

i on the new time layer:

[u]n+1
i =

Ix1 + Ix2
2

, [p]n+1
i = −c2ρ0 + e(I

x

1
−[u]n+1

i
)/c, [ρ]n+1

i = ρ([p]n+1
i ). (23)

(vi) Finally we move to new conservative variables on the (n+ 1)-layer utilising second-order
accuracy finite-difference equations (FDE):

[R]n+1
i+ 1

2

− [R]n
i+ 1

2

τn+ 1

2

/2
+

[ρu]i+1 − [ρu]i
∆xi+ 1

2

= 0, (24)

[RU ]n+1
i+ 1

2

− [RU ]n
i+ 1

2

τn+ 1

2

/2
+

[ρu2 + p]i+1 − [ρu2 + p]i
∆xn+ 1

2

= 0. (25)

The overline denotes flux-type variables averaged over time layers n and n+ 1.

2.2. Program implementation

The algorithm was implemented in sequential and parallel versions in Fortran 90. Since we used
shared memory system, OpenMP parallel technology was employed. The following parameters
were set in the original data file: sound speed c = 1500.0 m/s, computational domain size
LX = 2.0 m, initial velocity Uinit = 0.0 m/s, initial pressure Pinit = 101325.0 Pa, velocity
boundary condition Uinlet = 0.0 m/s, pressure boundary condition Pinlet = 1013250.0 Pa.
Courant number CFL = 0.15. We solved the problem of pressure equalisation [7] dividing
computational domain in two parts and setting the left-side pressure tenfold higher compared to
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Figure 1. Spatial distribution of density in a pressure gradient zone at t = 2×10−4 s. Numerals
in explanatory legend correspond to various number of points nX in domain.

the right-side one. At the boundary points we set conditions relevant to free fluid outflow. One
can estimate acoustic wave propagation time t, time step size τ and total number time steps nT :

t = LX/c ≈ 1.3× 10−3 s, ∆x = LX/nX ≈ 1.953 × 10−4 m, (26)

τ = 0.1∆x/c ≈ 1.302 × 10−8 s, nT = nX/CFL = 102400. (27)

The grid convergence tests were carried out for various number of grid points in the range
of nX = 256, . . . , 10240, showing the pressure wave steepening as well as the absence of any
oscillations which were damped by the nonlinear correction algorithm. However, developers’
claim that the shock wave “spreads” on a single cell seems to be unconfirmed, the mesh
refinement leads to the spatial gradient wave broadening while increasing the number of points
of the gradient zone (see figure 1). The pressure equalising process is limited by sound speed
and accompanied by the perturbed fluid flow to the lower density region. The absence of a
developed rarefaction wave traveling to the left is another feature. The flat-topped velocity
graph expanding to the borders of the computational domain is not presented here because of
its triviality.

We used one-dimensional problem of pressure equalization for parallel efficiency testing
measuring average execution time of 4 parallel sections—per one for each of computational
procedures. This time was calculated using OpenMP library built-in function omp get wtime()
and averaged with respect to all time cycles executed. The total number of points calculated
was nX = 10240. Maximum performance was achieved when the number of execution threads
(num threads) corresponds to the number of physical processor cores. Further increase of
num threads leads to rather sharp performance drop.

2.3. Compression wave running up from the left border

The initial values of conservative variables of the density R and the velocity U are given by
R = 1000.0 kg/m3, U = 0.0 m/s. A compression wave parameters at the left boundary are
determined by invariant Ix1 based on the far-field flow pressure p = Pinlet = 10Pinit and velocity
u = Uinlet = 0.0 m/s and invariant Ix2 coming from the interior points of the domain. At the
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Figure 2. Pressure gradient zone in a (ρ, x) plane at t = 2.0×10−4 s. Numerals in explanatory
legend correspond to various number of computational points nX .
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Figure 3. Spatial density gradient at t = 2.0 × 10−4 s. Numerals in explanatory legend
correspond to various number of computational points.

right border we set free outflow condition. Figure 2 shows the gradient zone of the pressure
wave, moving from the left boundary at t = 2.0 × 10−4 s for a different number of calculation
points without any numerical oscillations either at the bottom of the wave or on the plateau
behind it.

Density gradient as function of computational points number is shown in figure 3. Spatial
range corresponding to the gradient zone is normalized to unity in order to show resolution of
discontinuity, that is to say disruption “smearing” over finite number of cells.
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3. The isothermal flow of a viscous weakly compressible fluid in a flat channel

With a view of successive complication let us consider the CABARET method implementation
for the isothermal flow of Newtonian fluid in plane channel. The calculation was carried out
basing OpenMP parallel computing library and developers’ recommendations [2].

3.1. Algorithm formulation

Similarly to the previous section we start from governing equations written in divergence form:

∂ρ

∂t
+

∂ρu

∂x
+

∂ρv

∂y
= 0, (28)

∂ρu

∂t
+

∂ρu2

∂x
+

∂ρuv

∂y
+

∂p

∂x
= ΛuU, (29)

∂ρv

∂t
+

∂ρuv

∂x
+

∂ρv2

∂y
+

∂p

∂y
= ΛvV. (30)

One can write the viscous tensor
↔

T = µ[▽v + (▽v)T ] utilising the notation

qux =
∂u

∂x
, quy =

∂u

∂y
, qvx =

∂v

∂x
, qvy =

∂v

∂y
, (31)

and neglecting the influence of compressibility in the following form:

ΛuU =

(

∂µqux
∂x

+
∂µquy
∂y

)

,

ΛvV =

(

∂µqvx
∂x

+
∂µqvy
∂y

)

.

(32)

Then we rewrite the homogeneous equations in characteristic form. Unlike one-dimensional
implemetation there are three different invariants, corresponding to two perpendicular directions.
Column vector

~φT = (ρ, u, v) (33)

represents the set of independent variables for hyperbolic simultaneous equations

∂~φ

∂t
+Ax

∂~φ

∂t
+Ay

∂~φ

∂y
= 0, (34)

where matrices Ax =





u c2ρ 0
1
ρ u 0

0 0 u



 , Ay =





v 0 c2ρ
0 v 0
1
ρ 0 v



 possessing corresponding eigenvalues

and eigenvectors:

λx
1 = u+ c, λx

2 = u− c, λx
3 = u, (35)

ωx
1 =





1/ρc
1
0



 , ωx
2 =





−1/ρc
1
0



 , ωx
3 =





0
0
1



 , (36)

λy
1 = v + c, λy

2 = v − c, λy
3 = v, (37)

ωy
1 =





1/ρc
0
1



 , ωy
2 =





−1/ρc
0
1



 , ωy
3 =





0
1
0



 . (38)
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Thus, homogeneous differential equations

∂~φ

∂t
+Ax

∂~φ

∂x
= Qx, Qx = −Ay

∂~φ

∂y
,

∂~φ

∂t
+Ay

∂~φ

∂y
= Qy, Qy = −Ax

∂~φ

∂x

(39)

have characteristic form

∂Ixk
∂t

+ λx
k

∂Ixk
∂x

= Gx
k,

∂Iyk
∂t

+ λk
x

∂Iyk
∂x

= Gy
k, k = 1, 2, 3, (40)

where the number of familiar Riemann invariants Iik increases:

Ix1 = c ln(p + c2ρ0) + u, Ix2 = −c ln(p+ c2ρ0) + u, Ix3 = v, (41)

Iy1 = c ln(p+ c2ρ0) + v, Iy2 = −c ln(p+ c2ρ0) + v, Iy3 = u. (42)

For a two-dimensional implementation the main algorithm is to be modified.

(i) Firstly, n-th layer conservative and flux variables are initialized in accordance with initial
values so that the divergence of velocity is zero.

(ii) Secondly, an optimal sound speed should be determined basing the following reasoning.
If the flow time is less t1 = 3max(LX , LY )/Cinit, where LX and LY stand for X and
Y direction domain size, sound speed Cinit = 10.0–1500.0 m/s given in a setup file remains
unchanged over this time span in order to complete the process of pressure wave propagation
(compression towards the outlet, as well as backward rarefaction wave and accompanying
them velocity waves). When the timer expires t1 the sound speed c is determined
as cn+1 = 10max(|Un|, |V n|, |un|, |vn|). The new value is accepted, if cvisc < cn+1 < Cinit,
wherein cvisc = 2min(∆x,∆y)ρ0/µ0 denotes momentum transfer speed (hydrodynamic
mode). In case of c ≤ cvisc sound speed is set c = 10cvisc. However, c can not be greater
than that of in real fluid (c ≈ 1500.0 m/s).

(iii) Thirdly, the time step is calculated relying on the extended numerical stability condition
τ = CFLhmin(1/c, 2hρ/µ), where h = min(∆x,∆y).

(iv) Next, we calculate conservative variables at the intermediate layer in accordance with

n+ 1

2 [R]
i+ 1

2

j+ 1

2

−n [R]
i+ 1

2

j+ 1

2

τn+ 1

2

/2
+

n[ρu]i+1
j+ 1

2

−n [ρu]i
j+ 1

2

∆xi+ 1

2

+
n[ρv]

i+ 1

2

j+1 −n [ρv]
i+ 1

2

j

∆yj+ 1

2

= 0, (43)

n+ 1

2 [RU ]
i+ 1

2

j+ 1

2

−n [RU ]
i+ 1

2

j+ 1

2

τn+ 1

2

/2
+

n[ρu2 + p]i+1
j+ 1

2

−n [ρu2 + p]i
j+ 1

2

∆xi+ 1

2

+

n[ρuv]
i+ 1

2

j+1 −n [ρuv]
i+ 1

2

j

∆yj+ 1

2

= 0, (44)

n+ 1

2 [RV ]
i+ 1

2

j+ 1

2

−n [RV ]
i+ 1

2

j+ 1

2

τn+ 1

2

/2
+

n[ρuv]i+1
j+ 1

2

−n [ρuv]i
j+ 1

2

∆xi+ 1

2

+

n[ρv2 + p]
i+ 1

2

j+1 −
n [ρv2 + p]

i+ 1

2

j

∆yj+ 1

2

= 0. (45)
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The indices i and j in (43)–(45) and further numerate points in X and Y directions
correspondingly, n denotes time layer number, the indices i+ 1/2, and j + 1/2 are referred
to flux-type variables and located at midpoints of cells facets, n + 1/2 relates only to the
conservative variables of the intermediate time layer.

(v) Then one need to calculate conservative variables at the same time layer with respect to
inhomogeneous FDE

n+ 1

2 [P]
i+ 1

2

j+ 1

2

n+ 1

2 [Ũ ]
i+ 1

2

j+ 1

2

−n+ 1

2 [U ]
i+ 1

2

j+ 1

2

τn+ 1

2

/2
= ΛhUn,

n+ 1

2 [P]
i+ 1

2

j+ 1

2

n+ 1

2 [Ṽ ]
i+ 1

2

j+ 1

2

−n+ 1

2 [V ]
i+ 1

2

j+ 1

2

τn+ 1

2

/2
= ΛhV n,

(46)

wherein the following notation is introduced:

ΛhUn =
1

∆xi+ 1

2

(

n[µ]
i+ 1

2

j+ 1

2

(

n[qux ]
i+1
j+ 1

2

−n [qux ]
i
j+ 1

2

))

+

1

∆yj+ 1

2

(

n[µ]
i+ 1

2

j+ 1

2

(

n[quy ]
i+ 1

2

j+1 −n [quy ]
i+ 1

2

j

))

, (47)

ΛhV n =
1

∆xi+ 1

2

(

n[µ]
i+ 1

2

j+ 1

2

(

n[qvx]
i+1
j+ 1

2

−n [qvx]
i
j+ 1

2

))

+

1

∆yj+ 1

2

(

n[µ]
i+ 1

2

j+ 1

2

(

n[qvy ]
i+ 1

2

j+1 −n [quy ]
i+ 1

2

j

))

, (48)

and the fluxes belonging to the internal cells centers (i = 1 . . . nX − 1, j = 1 . . . nY − 1)
determined from the formulae:

n[qux ]
i
j+ 1

2

=

n[U ]
i+ 1

2

j+ 1

2

−n [U ]
i− 1

2

j+ 1

2

∆xi
, n[quy ]

i+ 1

2

j =

n[U ]
i+ 1

2

j+ 1

2

−n [U ]
i+ 1

2

j− 1

2

∆yi
,

n[qvx]
i
j+ 1

2

=

n[V ]
i+ 1

2

j+ 1

2

−n [V ]
i− 1

2

j+ 1

2

∆xi
, n[qvy ]

i+ 1

2

j =

n[V ]
i+ 1

2

j+ 1

2

−n [V ]
i+ 1

2

j− 1

2

∆yi
.

(49)

To calculate the fluxes in boundary cells one can use the value of the adjacent flux-type
variables, that leads to additional factor 2 in

n[qux ]
1
j+ 1

2

= 2

n[U ]
1

2

j+ 1

2

−n [u]0
j+ 1

2

∆xi
, n[qux ]

nX
j+ 1

2

= 2

n[u]nX
j+ 1

2

−n [u]
nX−

1

2

j+ 1

2

∆xi
,

n[quy ]
i+ 1

2

1 = 2

n[U ]
i+ 1

2
1

2

−n [u]
i+ 1

2

0

∆yi
, n[quy ]

i+ 1

2
nY = 2

n[u]
i+ 1

2
nY −n [U ]

i+ 1

2

nY −
1

2

∆yi
,

n[qvx]
1
j+ 1

2

= 2

n[V ]
1

2

j+ 1

2

−n [v]0
j+ 1

2

∆xi
, n[qvx]

nX
j+ 1

2

= 2

n[v]nX
j+ 1

2

−n [V ]
nX−

1

2

j+ 1

2

∆xi
,

n[qvy ]
i+ 1

2

1 = 2

n[V ]
i+ 1

2
1

2

−n [v]
i+ 1

2

0

∆yi
, n[qvy ]

i+ 1

2
nY = 2

n[v]
i+ 1

2
nY −n [V ]

i+ 1

2

nY −
1

2

∆yi
.

(50)
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(vi) On the next step we are to find the new values for flux-type variables in internal cells.
As weakly compressible fluid flow is always subsonic, the values of the first kind invariant
are transferred from left to right, and vice versa for the second invariant. So one should
extrapolate Ix1 to the new layer by formula

n+1[Ix1 ]
i
j+ 1

2

= 2n+
1

2 [Ix1 ]
i− 1

2

j+ 1

2

−n [Ix1 ]
i−1
j+ 1

2

, (51)

using left-hand side (LHS) conservative variables on the intermediate layer

n+ 1

2 [Ix1 ]
i− 1

2

j+ 1

2

= cn ln

(

p(n+
1

2 [R]
i− 1

2

j+ 1

2

) + c2ρ0

)

+n+ 1

2 [U]
i− 1

2

j+ 1

2

, (52)

LHS flux-type ones at the preceding time layer

n[Ix1 ]
i−1
j+ 1

2

= cn ln

(

p(n[R]i−1
j+ 1

2

) + c2ρ0

)

+n [U]i−1
j+ 1

2

. (53)

Again, to implement nonlinear correction algorithm we also are to calculate invariants based
on LHS conservative variables at the preceeding layer:

n[Ix1 ]
i− 1

2

j+ 1

2

= cn ln

(

p(n[R]
i− 1

2

j+ 1

2

) + c2ρ0

)

+n [U]
i− 1

2

j+ 1

2

, (54)

and flux-type variables at the current point:

n−1[Ix1 ]
i
j+ 1

2

= cn ln
(

p(n−1[R]i
j+ 1

2

) + c2ρ0

)

+n−1 [U]i
j+ 1

2

. (55)

Proceeding from known invariants set we also extrapolate right-hand side (RHS) parts of
inhomogeneous transfer equations in characteristic form:

n+ 1

2 〈Gx
1〉

i− 1

2

j+ 1

2

=

n+ 1

2 [Ix1 ]
i− 1

2

j+ 1

2

−n [Ix1 ]
i− 1

2

j+ 1

2

τn+ 1

2

/2
+n+ 1

2 [λ]
i− 1

2

j+ 1

2

n[Ix1 ]
i
j+ 1

2

−n [Ix1 ]
i−1
j+ 1

2

∆xi+ 1

2

. (56)

Guided by general procedure we are to perform a nonlinear correction of the first kind
invariant as follows:

n+1[Ix1 ]
i
j+ 1

2

=















n+1[Ix1 ]
i
j+ 1

2

, if min(Ix1 ) ≤
n+1 [Ix1 ]

i
j+ 1

2

≤ max(Ix1 )

min(Ix1 ), if n+1[Ix1 ]
i
j+ 1

2

< min(Ix1 )

max(Ix1 ), if n+1[Ix1 ]
i
j+ 1

2

> max(Ix1 )

, l = 1, 2, (57)

wherein

max(Ix1 ) = max
{n

[Ix1 ]
i−1
j+ 1

2

, n[Ix1 ]
i− 1

2

j+ 1

2

, n[Ix1 ]
i
j+ 1

2

}

+ τ
n+ 1

2

n+ 1

2

〈Gx
1〉

i− 1

2

j+ 1

2

,

min(Ix1 ) = min
{n

[Ix1 ]
i−1
j+ 1

2

, n[Ix1 ]
i− 1

2

j+ 1

2

, n[Ix1 ]
i
j+ 1

2

}

+ τ
n+ 1

2

n+ 1

2

〈Gx
1〉

i− 1

2

j+ 1

2

.
(58)

In a similar way one can calculate the second kind invariant using RHS cell parameters such
as RHS (in the center of adjacent cell) conservative variables at the intermediate time layer

n+ 1

2 [Ix2 ]
i+1 1

2

j+ 1

2

= cn ln

(

p(n+
1

2 [R]
i+ 1

2

j+ 1

2

) + c2ρ0

)

+n+ 1

2 [U]
i+ 1

2

j+ 1

2

(59)
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and RHS flux-type variables at the preceding time layer

n[Ix2 ]
i+1
j+ 1

2

= cn ln

(

p(n[R]i+1
j+ 1

2

) + c2ρ0

)

+n [U]i+1
j+ 1

2

(60)

in the underlying approximation

n+1[Ix2 ]
i
j+ 1

2

= 2n+
1

2 [Ix2 ]
i+ 1

2

j+ 1

2

−n [Ix2 ]
i+1
j+ 1

2

. (61)

So far, to obtain reasonable invariant value we perform routine nonlinear correction

n+1[Ix2 ]
i
j+ 1

2

=















n+1[Ix2 ]
i
j+ 1

2

, if min(Ix2 ) ≤
n+1 [Ix2 ]

i
j+ 1

2

≤ max(Ix2 )

min(Ix2 ), if n+1[Ix2 ]
i
j+ 1

2

< min(Ix2 )

max(Ix2 ), if n+1[Ix2 ]
i
j+ 1

2

> max(Ix2 )

, (62)

wherein n[Ix2 ]
i+ 1

2

j+ 1

2

is rested upon preceding layer RHS conservative variables

n[Ix2 ]
i+ 1

2

j+ 1

2

= cn ln

(

p(n[R]
i+ 1

2

j+ 1

2

)

)

+n [U]
i+ 1

2

j+ 1

2

, (63)

n−1[Ix2 ]
i
j+ 1

2

is determined by former layer RHS flux-type variables:

n[Ix2 ]
i
j+ 1

2

= cn ln
(

p(n−1[R]i
j+ 1

2

)
)

+n [U]i
j+ 1

2

(64)

and

n+ 1

2 〈Gx
2〉

i+ 1

2

j+ 1

2

=

n+ 1

2 [Ix2 ]
i+ 1

2

j+ 1

2

−n [Ix2 ]
i+ 1

2

j+ 1

2

τn+ 1

2

/2
+n+ 1

2 [λ]
i+ 1

2

j+ 1

2

n[Ix2 ]
i
j+ 1

2

−n [Ix2 ]
i+1
j+ 1

2

∆xi+ 1

2

(65)

max(Ix2 ) = max
{n

[Ix2 ]
i+1
j+ 1

2

, n[Ix2 ]
i+ 1

2

j+ 1

2

, n[Ix2 ]
i
j+ 1

2

}

+ τ
n+ 1

2

n+ 1

2

〈Gx
2〉

i+ 1

2

j+ 1

2

,

min(Ix2 ) = min
{n

[Ix2 ]
i+1
j+ 1

2

, n[Ix2 ]
i+ 1

2

j+ 1

2

, n[Ix2 ]
i
j+ 1

2

}

+ τ
n+ 1

2

n+ 1

2

〈Gx
2〉

i+ 1

2

j+ 1

2

.
(66)

Invariants at the new layer now let us find flux-type variables n+1[p]i
j+ 1

2

,n+1 [u]i
j+ 1

2

, the

former one is used as a switch, since it determines which of two adjacent cells (left or right)
will be employed to extrapolate and correct the third invariant. A positive value of flux-type
velocity n+1[u]i

j+ 1

2

≥ 0, means that we will exploit LHS cell parameters:

n+1[Ix3 ]
i
j+ 1

2

= 2n+
1

2 [Ix3 ]
i− 1

2

j+ 1

2

−n [Ix3 ]
i−1
j+ 1

2

, (67)

n+1[Ix3 ]
i
j+ 1

2

=















n+1[Ix3 ]
i
j+ 1

2

, if min(Ix3 ) ≤
n+1 [Ix3 ]

i
j+ 1

2

≤ max(Ix3 )

min(Ix3 ), if n+1[Ix3 ]
i
j+ 1

2

< min(Ix3 )

max(Ix3 ), if n+1[Ix3 ]
i
j+ 1

2

> max(Ix3 )

, (68)
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wherein

max(Ix3 ) = max
{n

[Ix3 ]
i−1
j+ 1

2

, n[Ix3 ]
i− 1

2

j+ 1

2

, n[Ix3 ]
i
j+ 1

2

}

+ τ
n+ 1

2

n+ 1

2

〈Gx
3〉

i− 1

2

j+ 1

2

,

min(Ix3 ) = min
{n

[Ix3 ]
i−1
j+ 1

2

, n[Ix3 ]
i− 1

2

j+ 1

2

, n[Ix3 ]
i
j+ 1

2

}

+ τ
n+ 1

2

n+ 1

2

〈Gx
3〉

i− 1

2

j+ 1

2

,

n+ 1

2 〈Gx
3〉

i− 1

2

j+ 1

2

=

n+ 1

2 [Ix3 ]
i− 1

2

j+ 1

2

−n [Ix3 ]
i− 1

2

j+ 1

2

τn+ 1

2

/2
+n+ 1

2 [λx
3 ]

i− 1

2

j+ 1

2

n[Ix3 ]
i
j+ 1

2

−n [Ix3 ]
i−1
j+ 1

2

∆xi+ 1

2

.

(69)

Coversely, n+1
i [u]

k+ 1

2

j+ 1

2

< 0 leads us to RHS cell:

n+1[Ix3 ]
i
j+ 1

2

= 2n+
1

2 [Ix3 ]
i+ 1

2

j+ 1

2

−n [Ix3 ]
i+1
j+ 1

2

, (70)

n+1[Ix3 ]
i
j+ 1

2

=















n+1[Ix3 ]
i
j+ 1

2

, if min(Ix3 ) ≤
n+1 [Ix3 ]

i
j+ 1

2

≤ max(Ix3 )

min(Ix3 ), if n+1[Ix3 ]
i
j+ 1

2

< min(Ix3 )

max(Ix3 ), if n+1[Ix3 ]
i
j+ 1

2

> max(Ix3 )

, (71)

wherein

max(Ix3 ) = max
{n

[Ix3 ]
i+1
j+ 1

2

, n[Ix3 ]
i+ 1

2

j+ 1

2

, n[Ix3 ]
i
j+ 1

2

}

+ τ
n+ 1

2

n+ 1

2

〈Gx
3〉

i+ 1

2

j+ 1

2

,

min(Ix3 ) = min
{n

[Ix3 ]
i+1
j+ 1

2

, n[Ix3 ]
i+ 1

2

j+ 1

2

, n[Ix3 ]
i
j+ 1

2

}

+ τ
n+ 1

2

n+ 1

2

〈Gx
3〉

i+ 1

2

j+ 1

2

,

n+ 1

2 〈Gx
3〉

i+ 1

2

j+ 1

2

=

n+ 1

2 [Ix3 ]
i+ 1

2

j+ 1

2

−n [Ix3 ]
i+ 1

2

j+ 1

2

τn+ 1

2

/2
+n+ 1

2 [λ]
i+ 1

2

j+ 1

2

n[Ix3 ]
i+1
j+ 1

2

−n [Ix3 ]
i
j+ 1

2

∆xi+ 1

2

.

(72)

Then from above equations we determine the deficient values of flux-type variables.
Calculation procedure for flux-type variables responsible for transport in Y direction is
fully identical.

(vii) Boundary cells flux-type variables are considered in terms of corresponding boundary values.
One can set 5 various types of boundary conditions for every edge, such as impermeability
(1), no-slip (2), subsonic inlet (3), free outflow (4), periodic (5) conditions.
In present paper we use plane Poiseuille flow as a test problem. It is worth noting that
in CABARET method we are to set boundary conditions for Riemann invariants, i.e. to
specify far-field parameters n+1p∞, n+1u∞, n+1v∞ determining first kind invariant. So for
the internal cell parameters we find the second kind invariant value coming to the front
boundary from the interior. To approximate RHS terms of transfer equations one should
use an averaged value of characteristic number:

n+ 1

2 [λx
2 ]

0
j+ 1

2

=
1

2

(

n+1u∞ +n+ 1

2 [U ]
1

2

j+ 1

2

)

+ c.

The third variant calculation approach depends on the sign of averaged characteristic
velocity

n+ 1

2 [λx
3 ]

0
j+ 1

2

=
1

2

(

n+ 1

2U
1

2

j+ 1

2

+n+1 u∞

)

, (73)
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and if n+ 1

2 [λx
3 ]

0
j+ 1

2

≥ 0, then n+1[v]0
j+ 1

2

= n+1
[
∞

Ix3
]0

j+ 1

2

. Otherwise, n+1[v]0
j+ 1

2

is obtained from

LHS cell parameters.
The free outlet condition at the back wall requires both quasi-steady Mach number and the
characteristic number that for the case of weakly compressible fluid results into

n+1[u]nX
j+ 1

2

= n+1[U ]
nX−

1

2

j+ 1

2

.

To find back wall boundary value for density we need to calculate n+1[Ix1 ]
nX
j+ 1

2

. As for

the third invariant, we assign its value in accordance with the sign of n+ 1

2 [λx
3 ]

nX+ 1

2

j+ 1

2

. At

the left boundary we set no-slip condition wherein all flux-type velocity components are

equal to zero: n+1[u]
i+ 1

2

0 = n+1[v]
i+ 1

2

0 = 0, a further condition comes with the second kind
characteristics

−c ln

(

n+1[p]
i+ 1

2

0 + c2ρ0

)

= n+1[Iy2 ]
i+ 1

2

0 . (74)

The following formulae are also introduced for the right boundary:

n+1[u]
i+ 1

2
nY = n+1[v]

i+ 1

2
nY = 0, c ln

(

n+1[p]
i+ 1

2
nY + c2ρ0

)

= n+1[Iy1 ]
i+ 1

2

0 . (75)

(viii) Moving to the final steps of the CABARET method, we now calculate conservative variables
at the (n+ 1)-layer utilizing homogeneous FDE

n+1[R]
i+ 1

2

j+ 1

2

−n [R]
i+ 1

2

j+ 1

2

τn+ 1

2

+

n[ρu]i+1
j+ 1

2

−n [ρu]i
j+ 1

2

∆xi+ 1

2

+
n[ρv]

i+ 1

2

j+1 −n [ρv]
i+ 1

2

j

∆yj+ 1

2

= 0, (76)

n+1[RU ]
i+ 1

2

j+ 1

2

−n [RU ]
i+ 1

2

j+ 1

2

τn+ 1

2

+

n[ρu2 + p]i+1
j+ 1

2

−n [ρu2 + p]i
j+ 1

2

∆xn+ 1

2

+

n[ρuv]
i+ 1

2

j+1 −n [ρuv]
i+ 1

2

j

∆yn+ 1

2

= 0, (77)

n+1[RV ]
i+ 1

2

j+ 1

2

−n [RV ]
i+ 1

2

j+ 1

2

τn+ 1

2

+

n[ρuv]i+1
j+ 1

2

−n [ρuv]i
j+ 1

2

∆xi+ 1

2

+

n[ρv2 + p]
i+ 1

2

j+1 −n [ρv2 + p]
i+ 1

2

j

∆yj+ 1

2

= 0. (78)

(ix) To finish current time step we correct new conservative variables with respect to viscous
forces:

n+1[R]
i+ 1

2

j+ 1

2

n+ 1

2 [Ũ ]
i+ 1

2

j+ 1

2

−n+ 1

2 [U ]
i+ 1

2

j+ 1

2

τn+ 1

2

= ΛhUn+ 1

2 ,

n+1[R]
i+ 1

2

j+ 1

2

n+ 1

2 [Ṽ ]
i+ 1

2

j+ 1

2

−n+ 1

2 [V ]
i+ 1

2

j+ 1

2

τn+ 1

2

= ΛhV n+ 1

2 .

(79)
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Viscous fluxes in the interior cells are determined by intermediate layer conservative
variables, whereas for boundary cells we also employ time-averaged flux-type variables:

[u]
l

j+ 1

2

= 0.5
(

n[u]l
j+ 1

2

+n+1 [u]l
j+ 1

2

)

, [v]
l

j+ 1

2

= 0.5
(

n[v]l
j+ 1

2

+n+1 [v]l
j+ 1

2

)

, l = 1, nX ,

[u]
i+ 1

2

m = 0.5

(

n[u]
i+ 1

2
m +n+1 [u]

i+ 1

2
m

)

, [v]
i+ 1

2

m = 0.5

(

n[v]
i+ 1

2
m +n+1 [v]

j+ 1

2
m

)

, m = 1, nY .

3.2. Classical Poiseuille flow in a plane channel

A classical plane Poiseuille flow under the constant pressure gradient was used as a benchmark for
the two-dimensional CABARET method. It’s important to note again that according to general
procedure we are to set the Riemann invariants according to boundary conditions. Thus, the
far-field pressure coincides implicitly with a stagnation pressure in isentropic compressible fluid
flows.

To set Poiseuille flow in the most accurate way we keep constant gradient condition
deliberately specifying values of flux-type pressure variables at the boundaries. For calculation
we use quite coarse grid with the number of cells nX = 60, nY = 100. The following data are also
necessary for equation solving: a sound velocity c = 1.0–100.0 m/s, a fluid viscosity µ = 0.1 Pa s,
a channel length LX = 2.0 m, a channel width LY = 0.1 m, reference density ρ0 = 1000.0 kg/m3,
both initial velocity components and pressure are set to be zero. Initial density of the equation
of state, the components of the initial velocity and pressure are set equal to zero. We compared
the results with the steady-state velocity profile determined by the formula

U(y) =
∆p

2µLX
y(y − LY ), y ∈ [0, LY ], (80)

calculating the relative error ǫ between numerical Uc and analytical Ua values of streamwise
axial velocity:

ǫ =
|Uc − Ua|

Ua
. (81)

The maximum this error shown in figure 4 for different values of static pressure differential
∆p does not exceed 1.5% and appertains to an axial region for all calculations except for the
first one. This fact stems from very slow stabilisation, that may be unfinished at flow time
t ≈ 70 s. However, in the first test performed for a very slow flow at ∆p = 1.6 Pa and axial
velocity Uaxial = 0.01 m/s, the range of maximum error falls on boundary layers and does not
exceed 0.5%. Generally speaking the errors obtained do not exceed those predicted by the weakly
compressible liquid model (1%).

Flow formation in the weakly compressible fluid starts with a compression wave propagating
from the front boundary to the outlet and separating stationary and moving fluid regions. This
wave reaching the outlet reflects as rarefaction one and moves upwind accompanied by flow
acceleration and finally gives rise to a new compression.

This repetitive process leading to the constant pressure gradient is manifested in the velocity
variations on the graph shown in figure 5 (a black line). The amplitude of these oscillations
decreases in the length of time. One can also note that the velocity increment due to rarefaction
wave several times higher compared to that one in compression wave. The growth rate curve
U/Uaxial being independent of the pressure gradient ∆p, as well as the sound speed c in the whole
range of the calculation parameters (see figure 5) appears to be the most remarkable result. U
and Uaxial denote current step axial velocity and reference velocity according to (80). Due to the
non-linear form of invariants transferred, this phenomenon can represent a class of self-similar
solutions for the weakly compressible fluid flow in a plane channel.
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Figure 4. Relative error ǫ in a steady-state Poiseuille flow as a function of spanwise position
at various pressure differentials.
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Figure 5. A set of axial velocity growth rate curves at various pressure drops and sound
velocities. The axial velocity magnitude is normalized by the corresponding steady-state value
Uaxial calculated analytically.

One of the drawbacks of weakly compressible fluid model exactly noted in a peer review is a
slow decrease of a residual norm

δU

Ua
=

|U − Ua|

Ua
, (82)

with iterations number growing determined as maximum relative difference between numerical
velocity value and analytical one that is located at a flow axis, i.e. Ua corresponds to an axial
velocity. This problem is of particular importance for pressure-driven flows (see figure 6). It
should be noted that the optimum sound speed for calculation falls in a range c = 50Ua–100Ua,
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Figure 6. A residual norm as a function time steps number for various sound sound velocities.
A blue-colored top axis corresponds to the case of c = 10.0 m/s.

if c ≈ 10Ua, an excessive fluid acceleration occurs that consequently slows the convergence rate.
Conversely, at c ≫ Ua, the residual norm appears to be a logarithmic function of time steps
number and solution time becomes unreasonably large.

4. Conclusion

The CABARET method represents a novel approach to solving fluid mechanics problems with
dominating convective transport and can be successfully used for simulation of gasdynamic
and incompressible fluid flows. The CABARET implementation for weakly compressible fluid
flows proved to maintain all important advantages of general approach such as the absence of
oscillations when calculating discontinuous flows, negligible dispersion and dissipation.

Testing of plane Poiseuille flow has shown that the results can be obtained with adequate
precision, but not less than that predicted by the model of weakly compressible fluid (1%). An
important feature of the considered pressure-driven flow is the self-similarity of velocity growth
rate curves in terms of varying the pressure drop and the sound speed.
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