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Abstract. Using modification of Maxwell model of viscoelastic medium, we have performed
2D simulations of the polymethylmethacrylate (PMMA) plates impingement at high velocities.
Previously, we had investigated numerically the influence of the viscoelastic properties upon
the dynamics of 1D shock-wave flows in PMMA. It was shown that, in a limit of weak shock
waves, the accounting of the viscoelastic properties allows one to achieve a better agreement of
calculated results and experimental data on the shock wave velocity magnitude than in the case
of hydrodynamic calculations. In the present work, we make a generalization of the polymer
material deformation model to the case of 2D stress state. The equation is written for the plastic
deformation tensor, which describes the relaxation of the maximal shear stress.

1. Introduction

High-molecular compounds (polymers) represent a valuable class of materials. The interest in
studying of the process of dynamic behavior of polymers, in particular polymethylmethacrylate
(PMMA), is due to the fact that these materials have unique combination of properties and are
widely used in various fields of science and technology. Many physical phenomena associated
with the dynamic deformation of polymeric materials are accompanied by the formation and
interaction of shock waves [1]. The impact of plates with known velocities creates well controlled
conditions of loading. A number of experimental works is devoted to study of deformation and
destruction of PMMA at quasi-static and dynamic loading [2–7]. An important phenomenon
of the shock-wave dynamics in the loaded material is the effect of spallation [8]. To determine
the spall strength of the material, some authors [5–7] use the approach based on the measuring
the depth of the resulting cave, left by the spalled piece after the intensive pulsed laser action
on the target, and the velocity of the spalled layer with the subsequent mathematical modeling
of the shock-wave process within the studied target [9]. This approach is sensitive to that how
correctly the dynamics of the shock wave is calculated. The Mises condition and Maxwell model
was combined in the work [10] for a polymer. In the present work, we use the Coulomb–Tresca
approach, where the plastic deformation is caused by the relaxation of the maximum shear
stress.

We had already investigated numerically the influence of the viscoelastic properties on the
shock wave dynamics in PMMA in 1D simulations previously [11]. It was shown that, in a limit
of weak shock waves, the accounting of the viscoelastic properties allows one to achieve a better
agreement of calculated results and experimental data on the magnitude of the shock wave
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velocity than in the case of hydrodynamic simulations. The results showed that the changes of
the shock wave amplitude with the depth are approximately identical in the hydrodynamic and
viscoelastic cases. In this work, we present a generalization of the polymer material deformation
model.

2. Mathematical model

The basic system of equations of continuum mechanics [12] in 2D is as follows:

dρ

dt
= −ρ

∂υk
∂xk

, (1)

ρ
dυi
dt

=
∂σik
∂xk

+ η1∆υi, (2)

ρ
dE

dt
= σikυik, (3)

where υi is the substance velocity; ρ is the density; σik = −Pδik + Sik is the combined stress;
P is the pressure; Sik is the stress deviator; η1 is the coefficient of viscosity, E is the internal
energy. The system consists of equation of continuity (1), equation of motion (2) and equation
for the internal energy (3). Caloric equation of state [13,14] is used to calculate the dependence
of pressure upon the specific volume V = 1/ρ and the specific internal energy E. The system
should be added with an equation for the stress deviator (Hooke’s law) [15]:

Sik = 2G

[

uik −
1

3
δikull −Wik

]

, (4)

where ull = uxx+uyy; Wik is the component of the plastic strain tensor; G is the shear modulus;
uik is the component of the macroscopic strain tensor, which is defined by the macroscopic
motion of matter:

duik
dt

=
1

2
(υik + υki) + oik, υik =

∂υi
∂xk

. (5)

The term oik takes into account the volume element rotation relative to the coordinate system.
We refer the velocity, pressure and density to the certain particles of the continuous medium
moving in space in the course of time.

3. Model of viscoelasticity

3.1. 1D model

Using the Maxwell model of viscoelastic medium, we consider the uniaxial deformation of the
material. At the series connection, tension in each element is the same, while the general
deformation consists of deformation of the elastic element and deformation of the viscous one.
In this case, we can write [15]

dSxx

dt
= G

(

4

3

duxx
dt

−
Sxx

η

)

, (6)

where η is the coefficient of viscosity. Substituting the stress deviator in equation (6) we can
find an equation for the plastic deformation

dWxx

dt
=

(

2

3
uxx −Wxx

)

τ−1, (7)
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Figure 1. Laboratory and auxiliary coordinate systems.

where τ = η/G is the relaxation time. The plastic flow in polymers starts at the value of the stress
deviator Sxx larger than the threshold yb characterizing the static yield stress; generalization of
equation (7) is as follows [11]:

dWxx

dt
=

(

2

3
uxx −Wxx −

yb
2G

)

τ−1 × θ (|Sxx| − yb) , (8)

where θ is the Heaviside function. The main stress axes coincide with the x, y, z axes.

3.2. 2D model

The purpose of this section is to determine the component of the plastic strain tensor using
a model of viscoelasticity. We generalize the equation (8), written in the main axes in the
two-dimensional case. Rotation is necessary to go to the main axes.

Let us consider the auxiliary coordinate system (primed) rotated relative to the laboratory
coordinate system by the angle ϕ (figure 1). Expressing the new coordinates through old one, we
find the relationship between the coordinates of the same point in different coordinate systems
on a plane:

(

ax′

ay′

)

=

(

cosϕ sinϕ
− sinϕ cosϕ

)(

ax
ay

)

. (9)

Similarly, we can write for the stress deviator:
(

Sx′x′ Sx′y′

Sx′y′ Sy′y′

)

=

(

cosϕ − sinϕ
sinϕ cosϕ

)(

Sxx Sxy

Sxy Syy

)(

cosϕ sinϕ
− sinϕ cosϕ

)

. (10)

After multiplication, we obtain the following expression for the component x′y′:

Sx′y′ = Sxx sinϕ cosϕ+ Sxycos
2ϕ− Sxysin

2ϕ− Syy sinϕ cosϕ. (11)

Go to the system of the main axes, where the nondiagonal components must be equal to zero:

Sx′y′ =
1

2
sin(2ϕ)(Sxx − Syy) + Sxy cos(2ϕ) = 0. (12)

In this way, we find an expression for the angle:

tan(2ϕ) =
2Sxy

Syy − Sxx
, (13)
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ϕ =
1

2
arctan

(

2Sxy

Syy − Sxx

)

. (14)

From (10), after multiplication, we obtain the following expression for the component Sx′x′ :

Sx′x′ = Sxxcos
2ϕ− 2Sxy sinϕ cosϕ+ Syysin

2ϕ,

Sx′x′ =
1

2
(Syy + Sxx) +

1

2
(Sxx − Syy) cos(2ϕ) − Sxy sin(2ϕ). (15)

Taking into account equality

cos(2ϕ) = ±
1

√

1 + tan2(2ϕ)
, sin(2ϕ) = ±

tan(2ϕ)
√

1 + tan2(2ϕ)
, (16)

and relation (13), we obtain after several transformations the following expression:

Sx′x′ =
1

2
(Syy + Sxx) +

1

2

√

(Syy − Sxx)
2 + 4S2

xy. (17)

Similarly, for the component Sy′y′ :

Sy′y′ =
1

2
(Syy + Sxx)−

1

2

√

(Syy − Sxx)
2 + 4S2

xy. (18)

Using formulas (17) and (18), we find the maximum tangential stress, which is equal to half
of the absolute value of the main stresses:

στ =
Sx′x′ − Sy′y′

2
. (19)

Differential formulation of plastic strain tensor that determines the shear stress via Hooke’s
law (4) takes the following form:

dWx′x′

dt
=

1

2Gτ

(

4

3
στ − yb

)

× θ

(

4

3
|στ | − yb

)

. (20)

Plastic deformation preserves the volume, therefore assuming Wz′z′ = 0, we will have

dWx′x′

dt
= −

dWy′y′

dt
.

Expressing the new value through old one, we find the relationship between the values in the
same point in different coordinate systems on the plane:

(

dWxx/dt dWxy/dt
dWxy/dt dWyy/dt

)

=

(

cosϕ − sinϕ
sinϕ cosϕ

)(

dWx′x′/dt 0
0 −dWx′x′/dt

)(

cosϕ sinϕ
− sinϕ cosϕ

)

. (21)

After multiplication of tensors in the right-hand side of equation (21), we obtain the following
relations:

dWxx

dt
=

dWx′x′

dt
cos(2ϕ) +Oxx,

dWxy

dt
=

dWx′x′

dt
sin(2ϕ) +Oxy, (22)

dWyy

dt
= −

dWx′x′

dt
cos(2ϕ) +Oyy,

where the terms Oik take into account the volume element rotation relative to the coordinate
system. Equations (4), (22), (20), (19) and (14) constitute the model of the polymer plasticity
considered in the two-dimensional case.
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4. Numerical solution

Equations of the model are solved numerically using finite differences. We write equation of
motion (2), for the x component:

dυx
dt

=
1

ρ

∂Sxy

∂y
+

1

ρ

(

∂Sxx

∂x
−

∂P

∂x

)

+
η1
ρ

(

∂υxx
∂x

+
∂υxy
∂y

)

. (23)

Same for the y component:

dυy
dt

=
1

ρ

(

∂Syy

∂y
−

∂P

∂y

)

+
1

ρ

∂Sxy

∂x
+

η1
ρ

(

∂υyx
∂x

+
∂υyy
∂y

)

. (24)

We use the following integral definitions of partial derivatives [16]:

∂F

∂x
= lim

A→0

1

A

∫

C

F (n× i)dS

∂F

∂y
= lim

A→0

1

A

∫

C

F (n× j)dS,

(25)

where C is boundary of the region A, S is the length of the arc, n is the normal vector, τ is the
tangent vector (figure 2):

n =
∂x

∂n
i+

∂y

∂n
j =

∂y

∂S
i−

∂x

∂S
j. (26)

Using such an expansion of the vector n (26), integral equation (25) can be represented as
follows:

∫

F (n× i)dS =

∫

F
∂y

∂S
dS,

∫

F (n× j)dS = −

∫

F
∂x

∂S
dS.

(27)

Applying this formula to the quadrangle 1, 3, 5, 7, which area is equal to A (figure 3), we
obtain for the function F defined in points 1, 3, 5, 7 the following derivatives:

∂F

∂x
=

1

A

∮

Fdy =
1

A
[F1(y3 − y1) + F2(y5 − y3) + F3(y7 − y5) + F4(y1 − y7)] ,

∂F

∂y
= −

1

A

∮

Fdx = −
1

A
[F1(x3 − x1) + F2(x5 − x3) + F3(x7 − x5) + F4(x1 − x7)] .

(28)

The equalities (28) are approximate, since the basic formulas (25) are precise at the limit
A → 0, but here they are used for the finite rectangle.

Here and below, we assume the following notation: the superscript in parentheses indicates
the number of cell, the subscript indicates the node number, and the superscript in square
brackets indicates the time step.

Applying formulas (28) for calculating the first spatial derivatives of the deviator components
in the center of the cell, we get

(

1

ρ

∂Sxy

∂y

)

0

= −
1

m

(

S(1)
xy (x3 − x1) + S(2)

xy (x5 − x3) + S(3)
xy (x7 − x5) + S(4)

xy (x1 − x7)
)

,

(

1

ρ

∂Sxx

∂x

)

0

=
1

m

(

S(1)
xx (y3 − y1) + S(2)

xx (y5 − y3) + S(3)
xx (y7 − y5) + S(4)

xx (y1 − y7)
)

,

(

1

ρ

∂Syy

∂y

)

0

= −
1

m

(

S(1)
yy (x3 − x1) + S(2)

yy (x5 − x3) + S(3)
yy (x7 − x5) + S(4)

yy (x1 − x7)
)

,

(

1

ρ

∂Sxy

∂x

)

0

=
1

m

(

S(1)
xy (y3 − y1) + S(2)

xy (y5 − y3) + S(3)
xy (y7 − y5) + S(4)

xy (y1 − y7)
)

,

(29)
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Figure 2. Contour for integration.

Figure 3. The scheme for the calculation of the derivative components.

where

m =
1

2

(

m(1) +m(2) +m(3) +m(4)
)

. (30)

We consider the mass and volume per unit length in the direction of the axis z, then the
volume coincides with the area, and will be denoted by the letter V .

Also, using formulas (28), we obtain the first derivative of the components of the pressure in
the center of the cell:

(

1

ρ

∂P

∂y

)

0

= −
1

m

(

P (1)(x3 − x1) + P (2)(x5 − x3) + P (3)(x7 − x5) + P (4)(x1 − x7)
)

,

(

1

ρ

∂P

∂x

)

0

=
1

m

(

P (1)(y3 − y1) + P (2)(y5 − y3) + P (3)(y7 − y5) + P (4)(y1 − y7)
)

.

(31)
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Figure 4. The scheme for calculating the components of the velocity gradient tensor.

Similarly, the spatial derivatives of the velocity gradient in the center of the cell:

(

1

ρ

∂υxy
∂y

)

0

= −
1

m

(

υ(1)xy (x3 − x1) + υ(2)xy (x5 − x3) + υ(3)xy (x7 − x5) + υ(4)xy (x1 − x7)
)

,

(

1

ρ

∂υxx
∂x

)

0

= −
1

m

(

υ(1)xx (y3 − y1) + υ(2)xx (y5 − y3) + υ(3)xx (y7 − y5) + υ(4)xx (y1 − y7)
)

,

(

1

ρ

∂υyy
∂y

)

0

= −
1

m

(

υ(1)yy (x3 − x1) + υ(2)yy (x5 − x3) + υ(3)yy (x7 − x5) + υ(4)yy (x1 − x7)
)

,

(

1

ρ

∂υyx
∂x

)

0

= −
1

m

(

υ(1)yx (y3 − y1) + υ(2)yx (y5 − y3) + υ(3)yx (y7 − y5) + υ(4)yx (y1 − y7)
)

.

(32)

The components of the velocity gradient tensor in expression (32) are calculated for each grid
cell by the following formulas (figure 4):

υyx =
1

2V
((υy1 − υy3) (y2 − y4) + (υy2 − υy4) (y3 − y1)) ,

υyy = −
1

2V
((υy1 − υy3) (x2 − x4) + (υy2 − υy4) (x3 − x1)) ,

υxx =
1

2V
((υx1 − υx3 ) (y2 − y4) + (υx2 − υx4 ) (y3 − y1)) ,

υxy = −
1

2V
((υx1 − υx3 ) (x2 − x4) + (υx2 − υx4 ) (x3 − x1)) .

(33)

Equations are integrated over time using the explicit Euler method. Particularly, for velocity
we have

υx = υ[n]x +∆tυ̇[n]x ,

υy = υ[n]y +∆tυ̇[n]x ,
(34)

where t is the step of integration over time.
Similarly one can obtain the following expressions for coordinates

x = x[n] +∆tυ[n]x ,

y = y[n] +∆tυ[n]y .
(35)

Formulas (34) and (35) are applied to all grid nodes i = 1, . . . , k, j = 1, . . . , m.
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For the internal energy equation, we can rewrite the equation (3):

ρ
dE

dt
= −Pυkk + Sikυik. (36)

Multiplying by V dt, we get

m∆E = −P [n]∆V +W, (37)

where W is the power connected with the action of the tangential stresses

W = Sikυik∆tV. (38)

As a result, we have

E(t) = E[n] +
(

−P [n]
(

V − V [n]
)

+W
)

m−1, (39)

where

W =

(

Sxxυxx + Syyυyy +
1

2
Sxy (υxy + υyx)

)

∆tV. (40)

For the strain tensor

uik(t) = u
[n]
ik +∆t

1

2
(υik + υki) , (41)

writing its components, we obtain the following

uxx(t) = u[n]xx +∆tυxx,

uyy(t) = u[n]yy +∆tυyy,

uxy(t) = u[n]xy +∆t
1

2
(υxy + υyx) .

(42)

The time step is chosen according to the Courant condition:

∆τ = Kmin

(

V

cS

)

, (43)

where the minimum is taken over all cells, the constant K ≈ 0.01.
These equations should be supplemented by equation of state of the materials in question and

equations (34), (35), (39), (41), thus one can obtain a complete system that allows describing
the deformation of PMMA.

5. Comparison of the simulation results with the experimental data

Standard test of the material properties is the flat high-velocity impact of the flyer plate on the
target plate [17]. Unloading wave is formed in the impactor after the circulation of the shock
wave, which is then propagating into the sample behind the shock wave. In the experiments [3],
the shock wave propagates through the sample of the initial thickness of 6.35 mm; the rear
surface of the sample is attached to the window. The initial thickness of the impactor is also
6.35 mm. Material of both the impactor and the target is PMMA. A continuous registration of
velocity of the rear surface of samples ufs (t) for various impactor velocities was realized in the
experiments [3]. Arrival of the shock wave front leads to the increase of the rear surface velocity.
Arrival of the unloading wave on the sample rear surface causes a decrease in speed.

Results of numerical modeling with use of the Maxwell model in comparison with the
experimental data [3] are presented in figure 5. Impactor of the initial thickness of 6.35 mm
extends along the x-axis. The initial thickness of the sample (target) is taken three times longer
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Figure 5. Velocity profiles on the rear surface of PMMA samples: solid lines correspond to the
data from experiments [3]; dashed lines are from our calculations with use of Maxwell model.

Figure 6. Spatial distribution of pressure.

to avoid the influence of the release wave from the free surface. The height of the sample is
taken twice to prevent unloading wave affects in the central part of the target. The size of the
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Figure 7. Spatial distribution of component of deviator stress.

Figure 8. Spatial distribution of components tensor of plastic deformation.

computational domain is 25 mm × 50 mm. Numerical grid of 100 × 200 cells is used in the
calculations.

Wave profile is characterized by the initially sharp growth (during the time of the order of
nanoseconds) of substance velocity to the value of about two-thirds of the maximal value. This
is followed by a smooth increase of the substance velocity to a peak value, and then the velocity
remains constant for some time until the arrival of the unloading wave. A good agreement of
the calculated and experimental data for the shock wave front is observed in figure 5; as for the
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unloading wave, the correspondence is considerably worse. The results presented in figure 5 are
calculated with the following parameters of Maxwell model: G = 1.5 GPa [18], τ = 0.4 µs, yb =
38 MPa. These parameters correspond to the best coincidence with the experimental data. The
results of our calculations qualitatively correspond to the results of modeling [19,20], which are
also obtained with the use of Maxwell model.

Figure 6–8 shows the spatial distribution of physical quantities. The problem is in the plane
impingement of the impactor and the target plates with velocity of 645 m/s. The material of
the both impactor and target is PMMA; the initial thickness of the impactor is 6.35 mm; the
initial thickness of the target is 18.65 mm, the initial height of the both is 50 mm.

Figure 6 shows the spatial distribution of pressure for three time instants: 1 µs, 5 µs and
9 µs. The graph shows the propagation of a shock wave into the target along the x axis upon
time. Figures 6a and 6b show how the shock wave emerges and run; figure 6c corresponds to
the moment of the negative pressure appearance. Figure 7 shows the spatial distribution of the
components of the stress deviator for 5 µs time instant. Figure 8 shows the spatial distribution
of plastic strain tensor components at 5 µs.

6. Conclusions

Using Maxwell model of the viscoelastic medium, we perform 2D simulation of impingement
of two PMMA plates. Parameters of the Maxwell model are chosen by comparison with the
experimental data on the high-velocity impact in order to fit the modeling results with the
measured profiles of the free-surface velocity.

Maxwell model with the constant relaxation time allows us to describe the structure of the
shock wave front, the unloading wave is described significantly worse. Comparison of calculated
results with available experimental data is presented. Graphs of the spatial distribution of
physical quantities such as the pressure, component of deviator stress, components tensor of
plastic deformation are shown. The results presented indicate the correctness of the code
realization of the model.
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