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Abstract. The positive ions of 3d metal and argon compounds (metal argide ions, MAr+)
play essential role in the mass spectrometry with argon plasma sources. At the same time
their thermodynamical properties are still not sufficiently studied. Rough estimations of the
internal partition functions of MAr+ have been made by Witte and Houk in order to calculate
the concentration ratio between metal and metal argide ions in the plasma. In this work we
performed more accurate estimations of the internal partition functions for VAr+ and CoAr+, for
which the experimental measurements of molecular constants are available. The thermodynamic
functions and equilibrium constant for reaction M+ + Ar = MAr+ were obtained for the
temperatures up to 104 K. The molecular constants were used to construct the potential curves
for the ground and excited states of the molecules. The one-dimensional Schrodinger equation
was solved using the Level code to find the rovibronic levels of the electronic states for the
specified potential. Different potential models such as a simple Morse potential and the potential
with the long range electrostatic attraction were used for comparison.

There is no data about thermodynamic functions for 3d-metal argide ions in the literature.
Meanwhile these complexes are observed in plasma mass spectrometry, when Ar is utilized to
generate the plasma. Its thermodynamic properties are essential in order to model processes
that proceed in ICP mass spectrometry and to forecast intensity of corresponding ion current
in the analysis of mass-spectra, because they can mask traces of heavy admixtures.

Calculation of internal partition function for 3d-metal argide ions is not the trivial task,
because of following issues: a) there is small quantity of experimental data about molecular
constants of such complexes; b) such complexes have small dissociation energy in comparison
with demanded temperatures. The basic source of information for calculating partition
function is theoretical quantum mechanical computation of main spectroscopic parameters:
Re (internuclear distance in the minimum of the potential well), De (dissociation energy), We

(vibrational constant, corresponding to degree of curvature in the minimum). Small dissociation
energy does not allow using of simple Harmonic Oscillator Rigid Rotator (HORR) approach [1]
widely used in calculations of thermodynamic properties of molecules with deep potential well
(see e.g. [2]).

In order to calculate vibration-rotational partition function of 3d metal argide ions, their
potential curves were considered on the base of available spectroscopic parameters. Two different
model potentials were used for this:
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Figure 1. (On the left) X5Σ+ ground state of VAr+: calculated vibrational levels for the Morse
potential.

Figure 2. (On the right) The same as in figure 1 but for the Bellert–Brekenridge potential [3].

(i) Morse potential that normally used to describe covalent bond in the molecule
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. (1)

(ii) Long range electrostatic attraction potential, that was listed by Bellert and Breckenridge
in their work [3]
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Rovibronic energy levels for specified potential were computed using LEVEL 8.2 code [4],
which applies numerical algorithms in order to determine the discrete eigenvalues of the
radial one-dimensional Schrodinger equation. As the result this code provides the energies of
vibrational levels and the coefficients of polynomial for calculating the rovibronic energy levels

Eν,J = G(ν)+Bν [J(J +1)]−Dν [J(J +1)]2+Hν[J(J +1)]3+ . . . =
∑

m=0

Km(ν)[J(J +1)]m. (3)

In figures 1 and 2 the potential curves with the calculated vibrational levels are shown.
Although both potentials look similar and have the same main spectroscopic parameters, the
system described by the Bellert-Breckenridge potential has essentially more vibrational levels
than the system described by the Morse potential.

In order to calculate the vibration-rotational partition function of electronic states, the
auxiliary Partition Function code was developed. This code reads the output data from LEVEL
8.2 code [4] and computes the partition function taking into account the following conditions.

First as the equations for calculating the rovibronic energies is polynomial of the seventh
degree (3), it is essential to check that the level energy increases with the increase of the rotation
number J . Analogous inspection must be performed when vibrational number is rising.

The second issue is that the potential energy is given by

VJ(r) = V0(r) + (
h

8π2µc
)J(J + 1)

1

r2
. (4)
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Figure 3. Potential energy depending on the the rotational number J for X5Σ+ ground state
of VAr+. Small yellow circles indicate local maxima.

Due to that with the increase of the rotational number J , first the local maximum appears on
the potential curve. At some value of J this maximum disappears together with the general
minimum so that the curve becomes monotonic (see figure 3). The Partition Function code
controls that the rovibronic level energy calculated by equation (3) is lower than the local
maximum energy of the potential for the corresponding rotational number J .

Taking the above restriction into account, the Partition Function code calculates the
vibration-rotational partition function of an electronic state using the equation

Qvib−rot =
∑

v,J

[

(2J + 1)e−(E(v,J)−E(0.0))/kBT
]

. (5)

In figure 4 the results for the computed vibration-rotational partition function for VAr+ in
the ground electronic state are presented. Different types of potential were probed with the
same values of main spectroscopic parameters. Figure 4 shows that two variants of the HORR
approach result in large errors. At the same time the difference between the Morse potential
and the Bellert-Breckenridge potential (that is more accurate at large distances) does not exceed
5− 10% at all temperatures. Therefore the use of Morse potential is acceptable when the given
accuracy is sufficient. It should be noted however, that the the Morse potential involves only
three parameters, while the Bellert-Breckenridge potential has a more complex equation (see (2)).

Using our Partition Function code we performed calculations of Qvib−rot for fifteen Ω-states
that correlate with spin-orbit components of the VAr+ ground LS-term 5D(3d4) and for twelve
Ω-states that correlate with spin-orbit components of the CoAr+ ground LS-term 3F(3d8).
Potential curves of the Ω-states were modeled using theoretical data on the relative energies
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Figure 4. Partition function for VAr+ ground state obtained using different interatomic
potentials: “HORR Full”—Harmonic Oscillator Rigid Rotator approach, “HORR Cut”—the
same taking the levels below the dissociation limit, “B-B”—see equation (2), “Morse”—Morse
potential (1).

and Re of ΛS-states from [5] and experimental data on the dissociation energy D0 and the
values of Re for the ground Ω-state: VAr+, Ω = 0, 5Σ+

0 [3, 6]; CoAr+, Ω = 3, 3D3 [3, 7]. The
ΛS-states potentials were described by equation (2) with Z = 1 and the electrostatic attraction
parameters given in [3]. The spin-orbit interaction in MAr+ was assumed to be the same as for
M+ ion. Additional calculation details will be presented elsewhere.

At the temperature T = 10000 K the calculated Qvib−rot values lie in the range of 390 000–
460 000 for VAr+ and 540 000–590 000 for CoAr+. In addition we obtained the values of
Qvib−rot for the experimentally observed excited states 5P1(3d

44s) of VAr+ [3, 6]; 3F4(3d
74s)

and 3P2(3d
74s) of CoAr+ [3, 7]. The rounded Qvib−rot values are 296 000, 325 000, and 336 000

for the first, second, and third state, respectively.
The next step was to calculate the values of internal partition function Qint for VAr+ and

CoAr+. In the equation

Qint =
∑

ik

gikQ
ik
vib−rote

−(Eik−E00)/kBT , (6)

the electronic states of MAr+ are numbered with a double index ik. The first number indicates
the correlation of the MAr+ electronic state with the i-th electronic state of the M+ ion. The
sum of the statistical weights gik is equal to gi.

Substituting Eik = Ei—Dik
0 in (6), where Ei is the energy of the i-th electronic level of M+

and Eik, Dik
0 are respectively energy and dissociation energy of the ik-th electronic state of
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Table 1. Thermodynamic functions for the vanadium argide positive ion.

Vanadium argide positive ion VAr+

V+ + Ar = VAr+, ∆rH
◦(0) = −35.673 kJ×mol−1

T C◦

p(T ) Φ◦(T ) S◦(T ) H◦(T )−H◦(0) lgK◦(T ) T
K J×K−1

×mol−1 kJ×mol−1 K

298.150 50.503 225.307 263.468 11.378 2.8325 298.150
300.000 50.634 225.541 263.781 11.471 2.7910 300.000
400.000 53.332 237.071 278.884 16.728 1.1373 400.000
500.000 51.757 246.651 290.659 22.002 0.1711 500.000
600.000 48.690 254.782 299.837 27.031 −0.4574 600.000
700.000 45.145 261.761 307.079 31.724 −0.8992 700.000
800.000 41.604 267.803 312.874 36.060 −1.2288 800.000
900.000 38.346 273.079 317.583 40.055 −1.4868 900.000
1000.000 35.565 277.726 321.474 43.745 −1.6968 1000.000
1500.000 31.774 294.695 334.730 60.048 −2.3825 1500.000
2000.000 27.340 305.739 342.744 74.010 −2.7976 2000.000
2500.000 26.679 313.762 348.736 87.430 −3.0968 2500.000
3000.000 27.301 320.014 353.645 100.895 −3.3313 3000.000
4000.000 29.515 329.476 361.792 129.271 −3.6874 4000.000
5000.000 31.554 336.635 368.608 259.852 −3.9544 5000.000
6000.000 32.899 342.467 374.491 192.143 −4.1682 6000.000
7000.000 33.444 347.418 379.614 225.382 −4.3462 7000.000
8000.000 33.207 351.727 384.073 258.770 −4.4987 8000.000
9000.000 32.254 355.539 387.936 291.557 −4.6323 9000.000
10000.000 30.670 358.953 391.257 323.068 −4.7516 10000.000

M = 90.8889
∆fH

◦(0) = 1128.800 kJ×mol−1

∆fH
◦(298.15) = 1135.598 kJ×mol−1

S◦

nucl = 17.682 J×K−1
×mol−1

Φ◦(T ) = 486.4169777 + 86.0555922ln(x)− 0.00847674037x−2 + 1.752847549x−1

−266.23008429x − 193.3549537286x2 + 1337.70128708283x3

(x = T × 10−4; 298.15 < T < 1500 K)

Φ◦(T ) = 332.1812428 + 2.170849983ln(x) + 0.197687156x−2
− 7.313112216x−1

+46.05081337x − 13.66621252x2 + 1.499948029387x3

(x = T × 10−4; 1500 < T < 10000 K)

MAr+, one can obtain

Qint =
∑

i

e(−Ei−E0)/kBT
∑

k

gikQ
ik
vib−rote

(Dik

0 −D0)/kBT . (7)

This equation allows us to calculate the part of Qint related to the low-lying Ω-states for which
the values of Qik

vib−rot and Dik
0 have been obtained above. This part (part 1) is dominant at

relatively low temperatures. The other parts of Qint (parts 2, 3, 4) we have determined as the
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Table 2. Thermodynamic functions for the cobalt argide positive ion.

Cobalt argide positive ion CoAr+

Co+ + Ar = CoAr+, ∆rH
◦(0) = −49.178 kJ×mol−1

T C◦

pT ) Φ◦(T ) S◦(T ) H◦(T )−H◦(0) lgK◦(T ) T

K J×K−1
×mol−1 kJ×mol−1 K

298.150 43.476 221.948 260.701 11.554 5.0044 298.150
300.000 43.493 222.189 260.790 11.635 4.9503 300.000
400.000 45.103 233.537 273.682 16.057 2.7697 400.000
500.000 46.748 242.627 283.933 20.654 1.4635 500.000
600.000 47.700 250.248 292.553 25.383 0.5949 600.000
700.000 47.842 256.828 299.926 30.167 −0.0235 700.000
800.000 47.248 262.624 306.284 34.927 −0.4859 800.000
900.000 46.057 267.791 311.785 39.597 −0.8450 900.000
1000.000 44.441 272.432 316.557 44.124 −1.1331 1000.000
1100.000 42.585 276.636 320.706 48.477 −1.3702 1100.000
1200.000 40.684 280.465 324.330 52.640 −1.5697 1200.000
1300.000 38.934 283.962 327.516 56.619 −1.7412 1300.000
1400.000 37.536 287.177 330.347 60.438 −1.8908 1400.000
1500.000 36.691 290.142 332.904 64.144 −2.0232 1500.000
2000.000 31.600 302.128 342.612 80.968 −2.5205 2000.000
2500.000 29.238 310.935 349.379 96.108 −2.8635 2500.000
3000.000 28.038 317.794 354.592 110.394 −3.1254 3000.000
4000.000 27.119 328.035 362.500 137.863 −3.5155 4000.000
5000.000 27.065 335.553 368.536 164.911 −3.8038 5000.000
6000.000 27.385 341.475 373.495 192.115 −4.0326 6000.000
7000.000 27.864 346.361 377.751 219.733 −4.2224 7000.000
8000.000 28.371 350.524 381.505 247.853 −4.3848 8000.000
9000.000 28.806 354.156 384.873 276.451 −4.5267 9000.000
10000.000 29.083 357.384 387.924 305.411 −4.6529 10000.000

M = 98.895
∆fH

◦(0) = 1079.634 kJ×mol−1

∆fH
◦(298.15) = 1086.422 kJ×mol−1

S◦

nucl = 17.526 J×K−1
×mol−1

Φ◦(T ) = 266.324211719 + 12.444517344ln(x) + 0.00294694886x−2
−

0.57372212185x−1 + 567.2339024059x − 1936.2937279628x2 + 2844.79727082856x3

(x = T × 10−4; 298.15 < T < 1500 K)

Φ◦(T ) = 362.736632729 + 25.698789141ln(x) + 0.1329649529x−2
− 4.3869317212x−1

−3.903259523755x + 3.7869495837x2 − 0.983104635848x3

(x = T × 10−4; 1500 < T < 10000 K)

contributions of the states that correlate with a) the terms of 3dn+1 configuration excluding the
ground LS-term; b) the terms of 3dn4s configuration; c) the terms of other configurations M+.
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These parts were calculated using the equation

Qint =
∑

i

gie
−(Ei−E0)/kBTQav

vib−rote
(Dav

0
−D0)/kBT , (8)

where Qav
vib−rot and Dav

0 are approximate average values of Qik
vib−rot and Dik

0 . For the part 2 we

have estimated the values of Qav
vib−rot and Dav

0 using the values Qik
vib−rot and Dik

0 from the part 1.

For the part 3 we have done the same but using the values Qik
vib−rot and Dik

0 for 5P1(3d
44s) state

of VAr+, and 3Φ4(3d
74s), 3

2(3d
74s) states of CoAr+ (see above). For the part 4 no values of

Qik
vib−rot and Dik

0 are available, therefore we have accepted the values of Qav
vib−rot and Dav

0 as in
the part 3. Note, that the part 4 correlates with high terms of M+ and it constitutes less than
1.1% of Qint even at 10 000 K. The energy levels for V+ and Co+ were taken from [8].

Subsequent calculations of thermodynamic functions of VAr+ and CoAr+ have been
performed using procedures set out in the reference book [9]. The results are shown in tables 1
and 2 which are the standard forms [9].

The concentration ratio of MAr+ and M+ at the thermal equilibrium can be calculated by
multiplying the tabulated values of K◦(T ) to the argon pressure in the units of atm. At the
room temperature and 1 atm argon pressure, almost all metal ions are associated with argon
atoms. If we assume that the thermal equilibrium is achieved on the axis of inductively coupled
plasma ion source in a mass spectrometer (which is quite questionable), the concentration ratio
VAr+/V+ at 6000 K would be of 68 ppm, and that of CoAr+/Co+ would be of 93 ppm. This is
2 to 3 times more than the values of 31.2 ppm and 31.5 ppm obtained in [10]. We hope that the
thermodynamic properties of metal argide ions will be useful for understanding the processes in
plasma mass spectrometry.
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