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Abstract. A simple caloric equation-of-state model is proposed to describe thermodynamic
properties of solid materials without phase transitions with the minimum number of parameters
as initial data. The thermal vibrations of the crystal lattice are described by the Debye
approximation. The parameter values on the zero isotherm are calculated analytically from
the generalized form of the Griineisen function. Thermodynamic characteristics are calculated
in the wide range of densities and pressures. The results of the theoretical calculations for
these materials are exhaustively compared with the available experimental data for high energy
densities.

1. Introduction

The modern wide-range equations of state, constructed to describe the behavior of metals in
a wide range of compression parameters, contain dozens of free parameters and experimentally
found constants [1,2]. Sometimes, these models are complemented by taking into account
multiple solid phases [3], the number of constants in this case inexorably increases. The constants
are calculated according to the shock-wave experiments, determined from isentropic curves of
unloading of porous samples, or are found from the experimental data in a wide area of the phase
diagram from thermodynamic relations. It is worth mentioning the modern models with fewer
constants as the initial data [4,5], but still there are too many of them to solve real engineering
problems [6-10]. With this approach, the search for constants for the equation of state becomes
a separate, time-consuming research task. That is why the problem of a few-parameter equation
of state has become an important issue.

2. Three-term equation of state
Results of experiments with shock waves provide enough material to construct semi-empirical
state equations describing the behavior of condensed matter at high pressures and temperatures.
The properties of matter under these conditions are determined by the interaction forces at
absolute zero temperature, the thermal vibrations of atoms or ions, and thermal excitation of
electrons.

Finding the cold pressure curves and obtaining the equation of state of compressed matter
from the results of the dynamic experiments require separation of the pressure and internal
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energy into heat and cold components [11]:

P =P, (V)+ P (V,T), (1)
E=E(V)+E (V. T). (2)

Elastic components of the pressure and internal energy P.(V), E.(V) are associated
exclusively with interaction forces acting between the atoms of the body and are equal to the
full pressure and specific internal energy at absolute zero, that is why they are sometimes
called “cold” pressure or energy. Heat components of pressure P,(V,T) and energy E;(V,T) are
associated with the body heating, i.e. with the temperature.

The equilibrium state of a solid at absolute zero temperature and zero pressure is
characterized by mutual compensation between the atomic forces of attraction and repulsion,
as well as the minimum of a potential elastic energy that can be taken as the beginning of its
reference . = 0. At absolute zero temperature, the atoms perform the so-called zero-point
oscillations, which are associated with the energy hw/2 attributed to a single normal oscillation
with frequency w. This energy can be included in potential energy E.(V).

The elastic pressure is associated with the potential energy through ratio

dE,

P.= . (3)

This ratio (3) makes a natural mechanical sense: the energy gain is equal to the work of
compression and can be regarded as equation of isotherm or adiabat of the cold compression. On
the other hand, formula (3) follows from the general thermodynamic relation T'dS = dE + PdV,
considering that the temperature T is equal to zero. However, according to the Nernst theorem,
entropy S at T' = 0 is equal to zero as well. Therefore, the isotherm 7" = 0 is isentrope S = 0 at
the same time.

The cold components do not depend on the temperature and characterize only the elastic
interaction of the atoms of the material. The heat components are the reaction of the material
to heat. If the temperature is not too high, the atoms of the solid generally oscillate about their
equilibrium positions. Moving the atoms in space by hopping in the interstice or other vacant
sites requires overcoming potential barriers. During compression, due to the increase of repulsive
forces, the potential barrier heights sharply increase as well. Free movements of the particles are
yet more complicated, and their movement remains limited by the space of their cells. Under
these conditions, it retains the properties of harmonic oscillations in a wide temperature range,
including the states arising from the shock compression of “continuous” samples.

The expressions for heat energy E;; and heat pressure P;; of the “classical” ensemble of
oscillators (lattice atoms) have the form:

Et,l = CVJT, (4)
T

P = - 5

t,l %Cv,zv, (5)

where ; is the Griineisen parameter expressing the ratio of the heat pressure to the density of
heat energy, cy; = 3R/A is specific heat of the lattice at constant volume (the law of Dulong-
Petit), A is the average atomic weight, R is gas constant.

Further increase of temperature up to several thousand degrees causes thermal excitation of
electrons, primarily, for the metals. Unlike the dielectrics, the metals’ free levels are immediately
adjacent to the Fermi surface limiting the filling of the energy states by electrons in the
momentum space. Because of this, the equations of state for metals at high temperatures,
in addition to the lattice components, should include terms that describe the heat pressure and
energy of the electron gas.
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When the metal is heated to temperature T, the number of excited electrons is proportional
to the number of filled levels vkT (v is the level density, k is Boltzmann constant) in the energy
interval KT'. Since the average energy acquired by each electron is proportional to k7', then the
total energy of the excited electrons is vT2, i.e. in the conventional form [12]

Eio=——— (6)

and, on the basis of the thermodynamic equation P = TfOT T—2(0E/0V)dT, we get

YeCV, eT2
pu— 7’ 7

Pie
where . is an electronic analog of the Griineisen parameter, expressing the ratio of the heat
pressure of electrons to the density of their heat energy, cyve = cy.e0 (V/V0)'® is electronic heat
capacity, ¢y, is the experimental value of the electronic heat capacity under normal conditions.

To describe the thermal properties of the electron gas, Kormer [12] conducted a detailed
analysis of the temperature behavior of electrons based on the quantum statistical calculations
by Gilvari [13] and Latter [14]. This analysis showed that below the temperatures of the order of
30000 to 50000 K, the heat capacity of the electrons is proportional to the temperature cy,. ~ T,
and the energy E;, ~ T 2. As for the thermal pressure, the statistical values of the electronic
analog of the Griineisen parameter 7, in experimentally attainable range of compressions are
constant with great precision and equal to 1/2 (for simple metals), while the high-temperature .
for transition metals are about two to three times larger. For the free electron gas v, = 2/3 [11].
In our equations, we use the value v, = 2/3 as well.

Taking into account the expressions (4)—(7), Mie-Griineisen equations (1) and (2) are reduced
to the form

v\ 2/3

E(V, T) = EC(V) + CVJT + 1/26V760T2 (%) , (8)
dEc CVlT 1 CveoT2 Vv 2/3
PV, T)=— : —— — 9
(V. T) ( av > v * 3V Vo ©)
or, in terms of free energy
0 2/3

F(V, T) = EC(V) + CVJT In <$> — 1/20V,60T2 <%> , (10)

where (V') is the Debye temperature.

3. Construction of the Griineisen function
Let us construct a model equation of state for thermodynamic functions of solid phase, based
on dependence (V') of the Griineisen parameter, obtained by Molodets [15,16]

2
(V) =2/3- A= avo/V’

2 L 2Pro
(s —2/3) Ky’

(11)

a=1+

(12)

where v5 = BKVy/cy, B is the coefficient of volume expansion, K is adiabatic bulk modulus,
cy is heat capacity at constant volume (in the case of considering the members responsible for
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the electronic excitation in equation (10), the heat capacity at constant volume cy = cy; + cye
consists of the lattice and electronic ones), P; is the heat part of the pressure under normal
conditions.

It should be noted that the procedure for the derivation of equation (11) is “tied” to the
initial state (Vp,Tp), such that P(Vp,Tp) = 0. In this thermodynamic state, all thermophysical
characteristics 5(Vo, To), Ks(Vo, To), cv (Vo, To), Pro(Vo, To) of the material are calculated, which
determine parameter a in (12). At that, it should be specifically noted that the derivation is not
limited by any assumptions about the type of condensed matter, and the formula itself contains
only general fundamental properties of the material.

Using the definition of the Griineisen parameter in the Debye approximation

_ (dino
T \dmv

and (11), we find the dependence of the Debye characteristic temperature on the volume

where 6y = 0(Vp) is the value of Debye temperature under normal conditions.

4. Finding the zero isotherm
Let us find the dependence of the Griineisen parameter on the volume (V). According to
Slater [17] and Landau [18], all the frequencies vary in proportion to the speed of sound

C =V(-dP./d V)l/ % and are inversely proportional to the interatomic distance r ~ V—1/3,
Under these assumptions, the average rate for the “classical” ensemble of oscillators
AP\ /2
~ VB Z2) 14
s dv (14)

The average rate by Dugdale and McDonald model, according to [19], is calculated as follows:

T d ” 1/2
WoM ~ VB[—E;;(RJ’ )] . (15)

Model of Zubarev and Vaschenko [20] for the particles, vibrating in a spherically symmetric
field of its neighbors, gives average rate

Wz ~ [—_fé-(fzvﬂ/3)]l/2 (16)

Comparison of the calculated dependences ~(V) obtained in different ways (see
equations (14)—(16) with the experimental data shows that none of the quasi-harmonic models
adequately describes the dynamic compression [2]. Therefore, for the most common expressions
for the potential energy on the zero isotherm, all the different assumptions can be combined into
a single formula for the mean frequency

W o~ V%?[———(Ryﬁj]UQ. (17)
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It is its logarithmic derivative by the volume that determines the generalized Griineisen

parameter
2

2—t V|agve

== () -3 |

av (PV)

Then, the value in (18) at ¢ = 0 corresponds to the theory of Landau-Slater, t = 1—Dugdale—-

Macdonald, ¢t = 2 corresponds to the free volume theory. It should be noted that the magnitude

and sign of parameter ¢ is determined by the nature of Poisson’s ratio. Zero value of parameter

t corresponds to constant Poisson’s ratio, i.e. to Slater’s formula (14). A positive value of ¢

corresponds to an increase of Poisson’s ratio with the pressure, i.e. to formulas of Dugdale—

MacDonald (15) and Zubarev—Vaschenko (16). Finally, a negative value of ¢ corresponds to a
negative derivative of Poisson’s ratio.

In the case of normal conditions at V' = Vj, we have the following relation for the value of

the Griineisen parameter:

(18)

1
Y=o = Y|=1 + 3= V]e=2 + 2/3.

Comparison of different methods of calculating (V') with the experimental data for aluminum
and copper in [21] has shown that none of the quasi-harmonic models (14)—(16) provides a
decisive advantage in the description of the dynamic experiment, therefore, in general, the use
of equation (17) is the most reliable. Additionally, we note that the use of formula (18) for the
calculation of (V') is acceptable, strictly speaking, only for isotropic structures or those having
cubic symmetry, while in the general case, it is necessary to take into account the tensor nature
of the Griineisen parameter.

To find the zero isotherm, we equate correlations for the Griineisen parameter at zero
temperature 7' = 0 from equations (11), (12) and the expression for the generalized Griineisen
parameter (18). Then, we can obtain the differential equation for the “cold” pressure P,

2 2—1 V|dve
Y L S—— S [ 2 S A 19
/ 1—acVo/V < 3 > 2| d (PV%> (19)

av

where a. is the value of parameter al;_, at zero temperature in equation (12). According to
equation (11), a. = a(0) = 1+ 2/(vs — 2/3) can be taken as the first approximation.

The solution of differential equation (19) allows one to determine the “cold” pressure and
energy

o va-%)
PoV) = CLV 23 4 CyHy(V), Eo(V) = — (172;” +CH(V) ) +C5 (20)

3

where C1, Cy and Cj are integration constants, and H; (V') and H2(V') are polynomials computed
by the following formulas [22,23]

3

12
Hy (V) =V"?? <—§k1§4 — 12ke83V + gkg,g?v? — ShaEV? + %k5v4> ;

Hy (V) = V73 (ki&h — dko€®V + 6kseV2 — 4y V3 + ks V).
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The following replacements are made here:

§=acVo, ki =tatiatitra, ko = tatiatsotra, k3 = tatitsotro, (21)
k4 = tiotitsotra, ks = tat1ot1tso, (22)
to =1+ 2, t12:t—|—1/2, ti1=t—1, t72:t—|—7/2, t52:t—5/2. (23)

To find the constants in (20), we perform the following steps, similar to [15].

(i) Having substituted equation (20) into the equation for the pressure (8) under normal
conditions T' = Ty V = V{j, we obtain point at isotherm of the normal state

2
YievTo n cv,e0ly

P(Vo, Ty) = CLV- 23 4 Oy Hy(V
(Vo, Tp) 1V + CoHa (Vo) + v 3V,

(24)

Having differentiated isotherm (20) by volume V' and using the experimental value of the
bulk isothermal compression modulus K; under normal conditions

[(8H2 (V)/8V> (Po = Pro) + Hz (V) <Kt/v0 + <6Pt’0/8v> ‘Tﬂ

o, = 3v(+%)
v 2t Hy (V) + 3V (3H2 (V)/av>

(25)

(ii) Since P(Vph,Ty) = Py, then, having substituted expression (25) into (24), we obtain the
value of constant Cy

L _[® P+ (B + (OPolpv ) )] 26
P 2 Hy (V) + 3V (OH2 (Vi) | .

where P; g is thermal pressure under normal conditions, corresponding to the second and
third terms in the equation for the pressure (8).

(iii) In order to find constant Cs5, we begin with finding the root of equation P.(V,) = 0, which is
obtained from equation for the pressure (20). Then, we assume that at the specific volume
equal to Vp v = Vpa.Vi, the potential energy is zero (potential well)

oy (1-2/9)
Cs = 11_*7/3 + CoHy(Vi). (27)
5. The scope of applicability of the thermodynamic model

One of the important moments in the development of the thermodynamic equations of state is
a question of the scope of their applicability. Parameters Vg, 8, K¢, cp, ©q, cy,eo of the model
are determined from the reference data for particular initial conditions, i.e., they characterize
only that phase of the matter, in which the substance exists under given initial conditions (one
phase of the substance) (see table 1).

Another limitation of the model is that relation (11) has a singularity at value of the current
volume V' = a.Vy. According to expression, it corresponds to the zero value of the characteristic
temperature, so at this point, all the thermodynamic functions of the material are discontinued.
Since this point lies in the area of strains, the correct application of the model in the area of
strains requires the use of other equations of state with conditions of crosslinking under normal
conditions, which is the subject of a separate study.
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Table 1. The thermodynamic parameters of materials.

Q0 K B,107 K Vp, em3/g  K;, GPa cp, J/mol K cy.ep, mJ/mol K2

Al [24] 433 69.9 0.372 72.2 24.35 1.35
Cu [24] 347 50.1 0.112 137.1 24.43 0.69
Pb [24] 105 85.5 0.088 43.2 26.65 2.99
UO, [25,26] 385 29.2 0.097 208 62.6 —

10.00 T P, Mbar
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8.00 +

7.00 + —

—Pc
A Pcexperiment
O P experiment

6.00 -
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Figure 1. Principal Hugoniot and curves of “cold” compression of aluminum (Al), copper (Cu),
and lead (Pb).

6. The calculation results
To calculate the behavior of condensed matter behind the front of shock waves, the original
expressions need to be supplemented with the Rankine-Hugoniot relation [11]

Eyg=FEy+ 1/2PH(‘/0 — V),

that allows of calculating all the thermodynamic parameters of materials on principal Hugoniot.
Table 2 summarizes the parameters of the model sufficient to calculate the cold energy and
pressure according to the formula (15). Figure 1 shows the principal Hugoniot and zero isotherms
of aluminum, copper, and lead calculated by the authors’ method.

For comparison, the results of the experiments of various research groups are shown, which
data are put together in [27], as well as the results of calculation of the “cold” pressure [28] (these
calculations are classical in the area of creation of the equation of state). As one can see, the
differences in the “cold” curves calculated in [28] and the authors’ dependences are insignificant
up to the compression ratios V5/V = 1.5. At the compression ratios V/V > 1.5 the differences
are more significant (but they do not exceed 7%) due to the method of constructing the model,
where the reference state for the construction of equations is the normal state of condensed
matter.
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Table 2. The parameters of the model.
t Qe Cl, GPa CQ, GPa Cg, kJ/g

Al 0.0 2.62 22.2 —0.19 —1091
Cu 0.0 234 69.7 —13.02 —9245
Pb 0.0 2.01 42.7 —19.8 —3810
UOy 0.6 4.98 4.7 —-0.3 —1132
37 P, Mbar
——Landau-Slater t=0
5 ——Calculation t=0.6

O "experimental results"

1 1.1 1.2 13 14 1.5 1.6 1.7 1.8

Figure 2. Principal Hugoniot of UQOs.

The calculations were conducted at parameter value t = 0 in equation (18), i.e. by the theory
of Landau-Slater. Calculations for the uranium dioxide UO5 have shown that there are no
values of the fitting parameter a. or the initial data, which determine the initial course of the
principal Hugoniot, that would allow of approximating the experimental data from [29] at ¢t = 0.
For ¢ > 1 the approximation is possible, but derivative 9P/Jp at the starting point for these
experiments is quite small. Figure 2 shows the calculation of the shock Hugoniots calculated at
t = 0, by the Landau-Slater method and at ¢ = 0.6 (18). The use of the Griineisen parameter
in the generalized form allowed of achieving a good match of the numerical simulation [8] and
the experimental data.

7. Conclusion

The number of semi-empirical relations (10), (13), (20) allows one to describe the behavior of
the thermodynamic properties of solids in a wide range of pressures and temperatures. At that,
to use the equation of state, it is necessary and sufficient to know only eight constants. Vj, 3,
Ky, cp, ©g, cveo corresponding to the values of the variables under normal conditions, which can
be found in directories on the physical and mechanical properties of materials [27]. Parameter
a¢, which is also included in the equation of state, is to be specified from the experimental data
(e.g., isotherm or Hugoniot) for a given value of parameter ¢t. The remaining values ¢y and
K, which are also used in the equations for the calculations, are determined from the above
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parameters using known thermodynamic identities

TV (K.B)?
Ks:KH—M, cv =cp — TVEKB
(6174

Thus, a simple caloric model of the equation of state is proposed to solve the high-speed
dynamic problems [8,30,31], providing accuracy comparable to that of the wide-range equations
of state in the area of compressions under consideration, with the minimal number of constants
needed for the solution.
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