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Abstract. In the framework of the theory of inhomogeneous electron gas, we consider a model
to calculate the static multipole polarizability. The analysis shows the possibility of the specific
dependence of the electron density perturbation (potential) of an atom in a weak external
electrostatic field.

General questions of density functional theory (DFT), one of the implementations of which
is the Thomas–Fermi model, are addressed in monographs [1,2]. The successful development of
the inhomogeneous electron gas theory or DFT and numerous applications in various fields of
physics, chemistry and technology leave no doubt that it is effective and relevant.

The aim of this work is to study a combined Thomas–Fermi model. The proposed model is
combined in the sense that it uses Hartree–Fock electronic distributions of atoms approximated
by Slater functions as the unperturbed electron density. In a broad sense, this does not go
beyond the scope of the model, or more precisely, beyond the DFT, because accounting for all
the corrections brings it to the quantum theory. Neglecting all the contributions to the energy,
except kinetic and potential, cannot influence the result significantly, as these contributions
have the same sign in static polarizability calculations; consequently, the others, being an order
of magnitude smaller and having different signs, can be ignored. The choice of the perturbed
electron density in the present model is based largely on the use of the results obtained in the
framework of the quantum-mechanical perturbation theory [3] and quantum electrodynamics [4].
However, that choice of perturbed potential cannot be simply regarded as going beyond the scope
of the Thomas–Fermi method, as the minimization of the energy functional by the Ritz method
involves fairly wide arbitrariness of the choice of trial functions, which of course does not exclude
the need for a physically clear rationale for this choice. Even the functional relationship between
the density of the ground state of the coupled system of interacting electrons and the potential
ϕ0(~r) is not precisely known. However, Hohenberg and Kohn [1] showed that all the properties of
the electronic structure of a system in the non-degenerate ground state are determined entirely
by its electron density.

Poisson’s equation (in atomic units):

△ϕ0(r) = −4πρ(r). (1)

In the Thomas–Fermi approximation:

ρ0(r) = γϕ
3/2
0 , (2)

where γ = 23/2/3π2.
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Accordingly, from (1)–(2) we obtain the Thomas–Fermi equation:

△ϕ0(r) =
8
√
2

3π
ϕ0(r)

3/2. (3)

In (1)–(3), ρ0, ϕ0 are the unperturbed electron density and the potential.
Suppose that as a result of some process, the electron density changes is

ρ(r) = ρ0(r) + δρ(r), (4)

and the potential equals to
ϕ(r) = ϕ0(r) + δϕ(r). (5)

We assume that the perturbations are small:

δρ(r) ≪ ρ0(r), δϕ(r) ≪ ϕ0(r). (6)

From the Thomas–Fermi equation for the perturbed electron density (potential) we obtain:

△δϕ(r) =
4
√
2

π
ϕ0(r)

1/2δϕ. (7)

Assuming δϕ ∝ ϕ0 [2] and linearizing (4), we obtain an equation [1, 5, 6] similar to the Mott
equation for test charge screening in a metal [1]:

∇2V = q2V, (8)

where q2 = 4kf/πa0, V = −ϕ, V0 = −(Z/r), kf is the Fermi momentum, a0 is the Bohr radius.
The solution to the Mott equation is

V (r) = −(Z/r) exp(−qr) = V0 exp(−β/V0), (9)

β = Zq, Z is the nuclear charge.
Accordingly, for δρ(r), we obtain:

δρ(r) ∝ λϕ0 exp

(

− β

ϕ0

)

. (10)

The dependence of the perturbed potential on the unperturbed one (6) is often the case when
such problems are solved without using the standard perturbation theory. Note, for example,
that the radiative correction to the Coulomb law associated with vacuum polarization by a point
charge [4] has the form:

δϕ(r) = Cϕ0(r) exp(−2r)/r3/2, r ≫ 1/m, (11)

where m is the electron mass.
Given that ϕ0 = e/r, it is obvious that

δϕ(r) ∝ exp(−2/ϕ0). (12)

In addition, within the framework of quantum mechanics, when the total potential energy
of a particle in an external field is viewed as a perturbation [3], the following expression was
obtained for the energy in the two-dimensional potential well:

|E| ∝ exp



−

∣

∣

∣

∣

∣

∣

∞
∫

0

ϕ0rdr

∣

∣

∣

∣

∣

∣

−1

 . (13)
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The exact calculation of the response function in the general case is not possible [1]. However,
based on the above, the main conclusion for us will be the characteristic dependence of δϕ(r)
on ϕ0.

Thus, in the proposed model, the perturbed part of the potential is chosen in the form of

δϕn = νnϕ0 exp

(

− σ

ϕ0(r)

)

, (14)

where

νn = −µn

∣

∣

∣

∣

∂nEZ

∂Zn

∣

∣

∣

∣

rn+1Pn+1(cos θ), (15)

Pn(cos θ) are the Legendre polynomials, µn is the variational parameter, EZ is the projection of
the Z axis of the strength of a weak external static electric field, σ = 3/π2.

From [7]:

ϕ0 = N







1

r

∑

i

aγi exp(−aλir) +
∑

j

bγj exp(−bλjr)







. (16)

Here N is the number of electrons in the atom, aγi,
bγj ,

aλi,
bλj are the parameters interpolating

the atomic electron distribution in the ground state.
In this paper, we restrict ourselves to the Thomas–Fermi approximation. We use the same

calculation procedure within the variational approach. The perturbation energy in the first and
second approximation has the following form:

δE(1) = −
∫

δϕρ(~r)d~r, (17)

δE(2) = −US + UP + UK , (18)

where

US =

∫

δϕδ(~r)d~r, (19)

UK =
5χk

9

∫

(δρ(r))2

ρ1/3
d~r, (20)

UP = −1

2

∫

δVeδρd~r =
1

2

∫ ∫

δρ(~r)δρ(~r′)

|~r − ~r′| d~rd~r′, (21)

US, UP is the energy of Coulomb interaction of the atomic nucleus with electrons and electrons
with each other, UK is the kinetic energy of the electron gas, χk = 0.3(3π2)2/3.

The variational parameter is determined from the condition of minimum energy. We introduce
the following notation:

WS = US/µ, WP = UP /µ
2, WK = UK/µ2. (22)

Then, the variational parameter is

µ = − W 2
S

2(WP −WK)
, (23)

and, accordingly, the energy is

δE(2) = − W 2
S

4(WP +WK)
. (24)
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On the other hand, the displacement of △En of the level En is expressed as

δE(n) = −1

2
α
(n)
ij EiEj , (25)

where the tensor α
(n)
ij is the polarizability of the atom in an external electric field.

The formula for multipole polarizability after integration over the angles of the original
expression becomes rather simple:

αn =
η20n

ξnη0n + 2
∫

∞

0 rϕ1/2ηn(r)dr
, (26)

where

ξn =
(2n + 1)π

4
√
2

, (27)

η0n = ηn(∞) =

∞
∫

0

ϕ1/2(r)r2n+2dr, (28)

ϕn = ϕ0 exp

(

− σ

ϕ0(r)

)

. (29)

Application of any type of density functional theory based on the concept of the homogeneous
electron gas to calculations of atomic properties represents a very hard test for it [1].

In this work, which is a follow-up of [8, 9], we restrict ourselves to the Thomas–Fermi
approximation. The results of polarizability calculations for the atoms of helium, neon, argon
and krypton, atoms of alkali metals (lithium, sodium and potassium), and halogen atoms
(fluorine, chlorine and bromine) within this model are reported in [8,9]. The calculations of the
static multipole polarizability of atoms with closed electron shells demonstrate good accuracy
of the model. The obvious advantage of the new model is its simplicity in terms of the amount
of calculations. The simplest implementation provides for (as the most difficult procedure) the
calculation of the double integral of a sufficiently smooth function.
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