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Abstract. The paper examines the reaction of an isotropic solid to infinitesimal and finite
density perturbations. The boundary of stability against relatively small homogeneous and
inhomogeneous deformations, and also the kinetic boundary of strength of a Lennard-Jones solid
are determined in molecular dynamics experiments at negative pressures. It is shown that on the
spinodal a solid retains its reducing reaction to small long-wave inhomogeneous perturbations.
The work of formation of a critical pore also has a nonzero value on the spinodal.

1. Introduction

A solid under a negative pressure is metastable, i.e. not quite stable [1–3]. The loss of stability
is connected with the formation of liquid-phase or cavitation voids (pores). The process of
nucleation determines the limiting tensile strength of a solid. Serving as the kinetic boundary,
the tensile strength depends on the sample volume and the time (rate) of the action.

Showing instability against nucleation, a metastable system retains its reducing reaction to
infinitesimal perturbations. The boundary of stability against such actions, i.e. the boundary
of essential instability, determines the theoretical or the ideal strength of a solid.

The present paper shows that at negative pressures there is a qualitative difference in the
behavior of stability of a solid and a liquid phase. This difference is connected with the presence
of shear stresses in solids and their absence in simple liquids.

2. Ideal strength of a solid

An isotropic ideally elastic solid under a hydrostatic pressure p at a temperature T is consider.
Density fluctuations will be expressed as fluctuations of volume deformation υ ≡ ull = −∆ρ/ρ,
where uij is the tensor of infinitesimal deformations, summation is carried out over the repeating
indexes.

A deformed state of an isotropic solid is characterized by the bulk modulusK = −V (∂p/∂V )T
and the shear modulus µ. A necessary and sufficient condition of the body stability against
homogeneous deformations, at which the deformation tensor is constant, is the possibility of the
moduli K and µ. The vanishing of one of these moduli means the loss of stability. The stability
may be lost against both volume and shear deformations.

If the deformation is accompanied by changes in the volume of the body but does not change
its shape, then expanding the Gibbs thermodynamic potential G into a power series uij close to
the equilibrium state (uij = 0) accurate to the term of the second order, we have

∆G(p, T, υ)/V =
1

2
Kυ2. (1)
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Root-mean-square fluctuations of υ in some isolated volume V ′ of the body are calculated
according to the well-known formula [4]

〈(∆υ)2〉 =
kBT

V ′K
. (2)

Here kB is the Boltzmann constant.
For prescribed p and T the equilibrium state will be stable if K > 0. At the boundary of

essential instability K = 0, and at the approach to it fluctuations of volume deformation increase
catastrophically. The line on which K = 0 is known as the spinodal [5].

In actual situations stresses and deformations are, as a rule, inhomogeneous. Inhomogeneous
fluctuations of ρ, as distinct from homogeneous ones, are accompanied by shear deformations
and depend on the wave vector ~q. A change in the Gibbs potential of a deformed solid (1) with
allowance for shear stresses will look like [6]

∆G(p, T, u)/V =
1

2
Ku2ll + µ(uij −

1

3
δijull)

2. (3)

In (3), the gradient term υ ≡ ull should also have been included, but since further we are
interested only in long-wave fluctuations, we omit such a term. The value of inhomogeneous
fluctuations is determined by only one component of the deformation tensor. If the vector ~q is
directed along the x -axis, then it will be the component uxx = ∂ux/∂x ≡ u. Assuming that in
this case uyy = uzz = 0, from (3) we obtain

∆G(p, T, u)/V =
1

2
K̃u2, (4)

where K̃ = K + (4/3)µ is the coefficient of unilateral compression, which describes the system
reaction to an inhomogeneous (in the form of a plane wave) change in the density. For the
Fourier component u(~q) we have

q2〈|u(~q)|2〉 =
kBT

V K̃
. (5)

Equation (5) at q → 0 does not coincide with expression (2).
Thus, inhomogeneous and heterogeneous density fluctuations are determined by different

elastic moduli, homogeneous by the bulk modulus and inhomogeneous by the coefficient of
unilateral compression without any changes in the lateral dimensions of the body. If we regard
the root-mean-square fluctuation 〈|u(~q)|2〉 as the result of thermal motion whose average energy
is kBT , equation (5) may be presented as

ω2 =
kBT

ρV 〈|u(~q)|2〉
=

K̃

ρ
q2 = v2aq

2. (6)

This equation expresses the dispersion law for acoustic phonons in the case of long waves.
Thus, inhomogeneous density fluctuations in a solid are longitudinal acoustic waves whose square
of rate va is proportional to the coefficient of unilateral compression.

Random density fluctuations in a solid lead to the appearance of stresses that cause the
propagation of deformations in the medium. If the damping coefficient of such perturbations
is small enough, then fluctuations are oscillations. A necessary condition for the stability of an
oscillation process realized in a solid is the reality of all its characteristic rates [6]. The vanishing
of the modulus K̃ signifies that ω = 0 and points to the solid instability. Thus, the boundaries of
stability of a solid against homogeneous and inhomogeneous density fluctuations do not coincide.
If the deformation of a solid are a homogeneous nature, and a state is achieved in which the
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Figure 1. Density dependence of the elastic moduli of an isotropic Lennard-Jones solid at a
temperature T = 0.4 (in units of ε/kB).

bulk modulus becomes zero, with the shear modulus retaining a finite value, then the solid loses
its stability against volume deformations. In this case, such a body retains its reducing reaction
to inhomogeneous perturbations. By “squeezing” a solid it is possible to achieve a state K̃ = 0,
in which inhomogeneous long-wave fluctuations will diverge.

The molecular dynamics method has been used investigate the elastic properties of a Lennard-
Jones FCC crystal at negative pressures. Models containing from 32000 to 500000 particles were
used. The cutoff radius of the potential was taken to be equal to 6.58σ, where σ is a parameter
of the Lennard-Jones potential. Further all the quantities calculated are given in dimensionless
form. The parameters of reducing are the potential parameters σ and ε, the Boltzmann constant
kB , and the particle mass m. Calculations of properties were carried out in an NVT ensemble
along isotherms T = 0.3, 0.4, 0.55 and 0.7 (in units of ε/kB), and the phase decay kinetics was
registered in NVE conditions.

The elastic moduliK and µ of an isotropic medium under a pressure p were calculated through
the effective elastic constants of an FCC crystal with the use of the procedure of their averaging
by Voigt and Reuss [7]. The distinction between the two means of averaging of elastic moduli
consists in the fact that in the Voigt method averaging is realized at a fixed external deformation,
and in the Reuss method at a fixed applied stress. Since the formulas used in calculations are
cumbersome, they are not given here. These formulas can be found in works [8–10].

Figure 1 shows the density dependence of the bulk modulusK (the value of this modulus does
not depend on the procedure of averaging) and the shear moduli obtained by the Voigt averaging
µV and by the Reuss averaging µR at a reduced temperature T = 0.4. The temperature of the
triple point of a Lennard-Jones crystal is Tt = 0.692. At temperatures lower than Tt the bulk
modulus is always the first to manifest the tendency toward vanishing. At the point where the
value of K is equal to zero µV and µR > 0. At T ≤ 0.5 a solid also retained its stability for a
finite time in states where K < 0.

The spinodal of a stretched Lennard-Jones solid in (p, T ) and (T, ρ)-coordinates is presented
in figure 2. Shown ibidem is the boundary of stability against inhomogeneous infinitesimal
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perturbations, on which K̃ = 0. Since µV and µR give the upper and the lower estimation of
the ideal value of µ of an isotropic solid, in calculations of K̃ use was made of the arithmetic
mean values of µV and µR. As is evident from figure 2, in the region of negative pressures
the boundary of the solid stability against inhomogeneous deformations is behind the spinodal.
In this case, as has already been mentioned, at high negative pressures it is possible not only
to approach the spinodal, but also to get past it retaining the reducing reaction of a solid to
infinitesimal inhomogeneous perturbations. To substantiate this result, it is necessary to turn
to the problem of nucleation of a new phase.

3. Limiting strength of a solid

If in a metastable system there are no available or readily activated centers, new-phase nuclei
form at the cost of fluctuations. The rate of fluctuation nucleation is mainly determined by the
minimum work required for the creation of a nucleus of a prescribed size. In a solid this work is
made up of the volume, surface, and elastic parts and depend not only on the size, but also on
the shape of a nucleus.

At negative pressures a phase decay may proceed with the formation of liquid drops and
pores. As shown in [10], pores form below the temperature of the endpoint of the melting line
(for a Lennard-Jones system TK = 0.529 [11]) and drops form above it.

We shall restrict ourselves to the case where the fracture of a solid is connected with the
fluctuation nucleation of pores. In the case of a lens-shaped pore with a radius R and a thickness
h ≪ R, using the result of Sneddon [12], from the theory of cracks, for a critical pore we have [13]

R∗ =
πγµ

(1− ν)p2
, (7)

h∗ = −
2γ

p
, (8)

W∗ =
2π3γ3µ2

3(1− ν)2p4
, (9)

where W∗ is the work of formation of a critical pore, γ is the solid–gas interface free energy, and
ν is the Poisson ratio

ν =
(3K − 2µ)

2(3K + µ)
. (10)

According to (7), (8) h∗/R∗ ∼ −p, i.e. typical of small stretches are critical pores that are
highly flattened in one dimension. At large stretches for a given volume of a critical pore its
shape will be determined from the condition of minimum of the interfacial energy. This must
lead to the spheroidization of a nucleus.

The formulas (7) and (9) differ from similar formulas for the liquid phase by the presence
in them of elastic moduli and the character of the pressure dependence of R∗ and W∗. In the
liquid phase the governing parameter in the expressions for R∗ and W∗ is the surface tension,
which on the spinodal is equal to zero, and the size of a nucleus and the work of its formation
here take zero values. In a solid γ is evidently finite [14], and the behavior of R∗ and W∗ close
to the spinodal will be determined by the behavior of the elastic moduli. As was shown earlier,
at negative pressures µ is also positive when K becomes zero. The Poisson ratio varies in the
range from −1 (at K = 0) to 1/2 (at µ = 0). From (7)–(9) in this case it follows that on the
spinodal finite values have the size of a critical pore and the work of its formation. This makes
it possible not only to achieve a spinodal state, but also to penetrate behind the spinodal.

Figure 3 gives the density dependence of R∗, h∗ and W∗ at a temperature T = 0.4. All
the quantities in formulas (7)–(9) have been calculated in a model of an isotropic Lennard-
Jones solid. As is evident from figure 3, an approach to the spinodal is accompanied by the
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Figure 2. Spinodal (1), line of attainable stretching in calculating properties (2) and boundary
of stability of a solid against inhomogeneous deformations (3) in (p, T ) (a) and (T, ρ) (b)
coordinates.
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Figure 3. Reduced work of formation W∗/kBT , radius of a critical void R∗ and its thickness
h∗ at a temperature T = 0.4. The vertical arrow shows the value of density on the spinodal of
a solid.

convergence of the sizes R∗ and h∗, i.e. a critical pore assumes a spherical shape, and the value
of the work of formation of a critical pore W∗ on the spinodal is approximately 20kBT . For
molecular dynamics models this is a sufficiently high activation barrier, which the system can
overcome after spending a rather long time, which exceeds that required for calculating the
physical properties. Therefore, while on the spinodal, a solid will possess a finite lifetime, and
behind the spinodal, retain a finite value of the activation energy.
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4. Conclusion

It is shown that the reactions of a solid and liquid to infinitesimal homogeneous and
inhomogeneous, and finite actions are qualitatively different. This difference is caused by shear
stresses in solids and their absence in liquids. First, at homogeneous deformations and negative
pressures a solid loses its stability against volume and retains it against shear deformations.
Second, in solids the boundaries of essential instability against homogeneous (spinodal) and
inhomogeneous long-wave perturbations do not coincide, which is not characteristic of liquids.
At negative pressures in a solid the boundary of stability against inhomogeneous perturbations
is behind the spinodal. Third, owing to the finite nonzero value of the crystal–gas interfacial
free energy, the work of formation of a critical pore and its size on the spinodal of a solid also
differ from zero. Thus, if homogeneous deformations in a solid are suppressed, then not only
spinodal, but also overspinodal states may be achieved in it. In this case a phase decay of a
solid behind the spinodal will be of actuation rather than relaxation character [15].
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