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Abstract. In this paper, it is shown that two non-linearities drive the oscillations amplitude
and the potential power density of the Self-Oscillating Fluidic Heat Engine (SOFHE). This
new type of engine converts thermal energy into mechanical energy by producing self-sustained
oscillations of a liquid column from a continuous heat source to power wireless sensors from
waste heat. The underlying theoretical modeling shows that the pressure and the temperature
nonlinearities limit the final oscillations amplitude, hence its achievable power density.

1. Introduction
The new paradigm of the Internet of things (IoT) leads to a multiplication of sensors everywhere
in our environment. Powering those wireless sensors longer than a battery life can be done by
harvesting nearby energy sources. In this paper, a new type of thermal energy harvester inspired
by [1] is studied, the Self-Oscillating Fluidic Heat Engine (SOFHE) [2, 3], which couples an
electro-mechanical transducer to a motor based on the self-oscillatory phenomenon observed in
the pulsating heat pipes (PHP) [4]. The motor in SOFHE consists of a small tube closed at one
end, filled with water (figure 1). By heating the closed-end, evaporation of the liquid leads to the
formation of a vapor bubble which increases in length until an equilibrium position is reached.
From this equilibrium, increasing the temperature of the heat source leads to an instability [5],
the liquid column starts to oscillate as shown by the experimental pressure measurements in
figure 2 from [2]. This paper shows that the final amplitude of the oscillations and the power
output of the SOFHE are limited by the gas pressure and the wall temperature nonlinearities.
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Figure 1: Tube, pressure and temperature.
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Figure 2: Start-up of the oscillations.
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2. Model of the self-oscillations
Newton’s second law is applied to the liquid column Eq. (1), where movement of the column (xi)
will result from the difference between the gas bubble pressure (Pg) in Eq. (2) and the external
pressure Pe and be opposed by the liquid’s friction (Ff ) assuming Poiseuille flow (Eq. (3)) and
the harvester, taken as a linear damping (Fh = chẋi where ch 6 0). In Eq. (2), the mass of
vapor mg change accordingly to the evaporation/condensation rate which is modelled from the
heat conduction (with a thermal resistance Rth and the enthalpy of vaporization Hv) to the
meniscus location, leading to the first part of Eq. (6). The value of the thermal resistance Rth
should come from experiment or theoretical estimation. The wall temperature Tw is constant in
the heat source at TH and at the heat sink at TL and varies linearly between those two regions.
This is modelled by an arctangent as shown in figure 1 and given by Eqs. (4) and (5).

ẍi = (1/m`) (Pg A− PeA+ Ff + Fh) (1)

Pg = mg Rg Tg/ ((xi + Lg,0) A) (2)

Ff = − 8π µL` ẋi = cf ẋi (3)

Tw = Ath arctan(Mth · x+Bth) + Cth (4)

Ath ≡ (TH − TL) /π (5a)

Cth ≡ (TH + TL) /2 (5b)

Mth ≡ 1/Ath
(
B2
th + 1

)
· (dT/dx)x=0 (5c)

Bth ≡ tan [(Tg,sat,0 − Cth) /Ath] (5d)

ṁg = Q̇

Hv
= Twall(xi)− Tg,sat

HvRth
= Ath
HvRth

arctan(Mth · xi +Bth) + Cth − Tg,sat
HvRth

(6)

The equilibrium solution of these equations is a constant xi such that Twall(xi) = Tg,sat,
leading to xi = ẋi = ṁg = 0. It is useful to study variations of the system relative to this
equilibrium and to nondimensionalized the problem with Lg,0 and the natural angular frequency
ωn (7f), leading to Eq. (8a) (nonlinear because of Pg) and Eq. (8c) (nonlinear because of the
arctan Tw profile). It is useful to study the effect of the nonlinearities. In that purpose, we can
compare the nonlinear equations (8a) and (8c) to their linearized counterpart given by Eqs. (8b)
and (8d). Finally, the harvester extracts an adimensionalized power P̃h given by Eq. (9).

x̃i ≡ xi/Lg,0 (7a)

τ ≡ ωn t (7b)
M̃th ≡ Lg,0Mth (7c)
Ãth ≡ Ath/TC (7d)

˙̃xi ≡ (1/ (ωnLg,0)) ẋi (7e)

ωn ≡ (Pg,0/ρ` L` Lg,0)1/2 (7f)
C̃th ≡ (Cth − Tg,sat) /TC (7g)
ζh ≡ −ch/ (2ωnm`) (7h)

∆̃mg ≡ (mg −mg,0) /mg,0 (7i)
ω̃ ≡ ω/ωn (7j)
ζf ≡ −cf/ (2ωnm`) (7k)
TC ≡ ωnmg,0Hv Rth (7l)

¨̃xi = −
( 1

1 + x̃i

)
x̃i +

( 1
1 + x̃i

)
∆̃mg − 2 (ζf + ζh) ˙̃xi (8a)

¨̃xi = −x̃i + ∆̃mg − 2 (ζf + ζh) ˙̃xi (8b)

˙̃∆mg = Ãth arctan(M̃th · x̃i +Bth) + C̃th (8c)

˙̃∆mg =
(
ÃthM̃th/(1 +Bth

2)
)
x̃i (8d)

P̃h ≡
(
π/ωn

3m` Lg,0
2
)
Ph = ω̃ ζh

∫ τ+2π/ω̃

τ

˙̃xi
2
dτ ≈ π ζh

˙̃
Xi

2
= π ω̃2 ζhX̃i

2 (9)
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3. The amplitude of the limit cycle is driven by the nonlinearities
As expected, numerical simulations of the linear equations (8b) and (8d) show an exponential
growth with no saturation. Including either one or the other nonlinearity does lead to saturation
of the amplitude. In the saturated regime, the variables x̃i, ˙̃xi and ˙̃∆mg varie nearly periodically
and is assumed to be reached when their difference between two consecutive cycle is less then
0.1% on all the cycle for ten consecutive cycles. The saturated regime is shown by the orbits
from numerical simulations in figure 3 for two cases (see table 1).

Table 1: Numerical value of the parameters for two studied cases

ζf Ãth M̃th Bth C̃th Conclusions

Case 1 0.0217 0.0043 -14.50 0.3792 -0.0016 TN dominates over PN
Case 2 0.0034 0.0271 -0.3625 0.3792 -0.0098 PN dominates over TN
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Figure 3: Saturated regime for ζh = 0 with parameters of table 1.

3.1. Wall Temperature Profile nonlinearity
As the meniscus oscillates at small amplitude, the wall temperature profile seen by the
meniscus is mostly linear (figure 1). As the amplitude increase, however, the wall temperature
increase/decrease less than linearly (Tw saturates, (4)). This leads to a saturation of the
evaporation/condensation (8c) and therefore, of the injection of energy into the system. Since
the dissipation of energy is linear, the system eventually reach an amplitude where the injection
of energy and the dissipation of energy equals each other over a cycle. The behavior of this
saturated regime (with only the Tw nonlinearity is shown in figure 3 by the curves denoted PLTN .
A saturation of ˙̃∆mg should be seen by plotting it against x̃i, given Eq. (8c). This signature
is indeed observed as shown by the curve PLTN in figure 3d. Such behavior in experimental
measurements could indicate the dominance of the Tw nonlinearity.

3.2. Pressure nonlinearity
When the meniscus oscillates, the compression/expansion of the gas gives rise to variations of
the pressure Pg with ∆Pg ∝ 1/(xi + Lg,0) (as shown in Eqs. (2), (8a) and in the figure 1). For
oscillations of small amplitude at constant mass, Pg is proportional to the volume variation :
Pg ∝ xi. As the amplitude increases, however, this linear approximation is not valid anymore. As
the meniscus goes toward the closed end (xi → −Lg,0), the pressure tends to infinity (as shown
in figure 1), preventing the liquid column to go touch the closed end. This nonlinear behavior
limits the evaporation/condensation rate and forces the system to settle on a saturated regime
as shown by the PNTL curve on figure 3a. The saturated regime exhibit an asymmetry along x̃i
on the plane (x̃i, ˙̃xi), a signature due to the presence of the closed end. As it reaches the closed
end, the system bounces back, reverses its velocity on a short distance.
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3.3. Pressure and Wall Temperature nonlinearities combined - Amplitude and Power
The combination of both nonlinearities leads to a saturated regime shown by the PNTN curves
in figure 3. In case 1, figures 3a and 3b, suppressing the pressure nonlinearity (the PLTN
curve which only contains the temperature nonlinearity) has so little effect on the size of the
saturated regime that the two curves PNTN and PLTN are almost undistinguishable. However,
suppressing the temperature nonlinearity (the PNTL curve) changes drastically the amplitude
of the saturated regime. One concludes that the wall temperature nonlinearity is dominant.
Incidentally, the PNTN curve is exhibiting a wall temperature nonlinearity signature and no
pressure nonlinearity signature. Now, from case 1, taking a ζh > 0 allows to produce a power
P̃h given by (9). By assuming a sinusoidal motion, we get the approximation in (9) which
clearly shows that for a given ζh and a given ω̃, the power P̃h will increase if the size of the
saturated regime increases (the peak amplitude of x̃i and ˙̃xi, X̃i and ˙̃

Xi respectively, increase).
The optimal ζh (which produce the maximal power) leads to P̃h(PNTN ) = 23, P̃h(PLTN ) = 24
and P̃h(PNTL) = 5250. Just like for the amplitude, suppressing either nonlinearity increases the
power but the temperature nonlinearity is clearly dominant.

Going from case 1 to case 2 is the adimensionnal equivalent of dividing Lg,0 by 40 and keeping
all the other dimensional parameters of the equations constants. The equilibrium is therefore
closer to the closed end and the pressure nonlinearity becomes more apparent. This is shown
in figures 3c and 3d where the pressure nonlinearity is now clearly dominant (suppressing the
temperature nonlinearity as much less influence on the size of the saturated regime). This
could have been concluded from the PNTN curve shape in figure 3c, which exhibit a nonlinear
pressure signature. In case 2, the optimal ζh leads to P̃h(PNTN ) = 631, P̃h(PLTN ) = 5750 and
P̃h(PNTL) = 848. Again, just like for the amplitude, suppressing either nonlinearity increase
the power but the pressure nonlinearity is now clearly dominant. One may conclude that one
non-linearity can dominate over the other to set the amplitude and the power output, depending
on the parameters of the system.

4. Conclusion
A nondimensional model of the SOFHE was presented which include two nonlinearities and a
linear harvester. It has been shown that the final amplitude of the system without harvesting
is limited by the nonlinearities. Furthermore, one nonlinearity can dominate over the other
(have more impact on the final amplitude than the other). Finally, it has been shown that
the nonlinearities also limits the power output. In this paper, the focus was solely on the
nonlinearity but the power output also depends on the linear part. It will eventually be useful
to show and understand the influence of the adimensional numbers on the amplitude and on the
power output, leading to design guidelines for the SOFHE.
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