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Abstract. In this paper, we have studied the effect of air pressure damping on the vibration-
based energy harvesting devices. The device we used is an electrostatic energy harvester with 
an out-of-the-plane gap closing scheme. A broadened bandwidth is observed at 4 Pa when the 
acceleration is increased from 0.5 m/s2. A power output of 2.2 μW is achieved at the air 
pressure of 4 Pa when a low acceleration of 0.5 m/s2 is applied, while the power output is only 
0.02 μW at atmosphere with an acceleration of 1.2 m/s2. Detailed study is made to investigate 
the waveform of the displacement and the voltage output. Nonlinearity is observed at low air 
gas pressure about 239 Pa and it is more significant at 4 Pa. 

1.  Introduction  
Recently, energy harvesters has been developed a lot because of the incomparable highlights as an 
alternative choice to replace the button cells in the wireless sensor networks, micro systems and in-
body health monitoring devices [1-2]. Among various energy harvesters, the vibration-based energy 
harvesting devices (VEHD) use the vibration-to-electricity conversion methods to convert kinetic 
energy to electric energy. VEHD based on the piezoelectric [3-6], electromagnetic [7-9] and 
electrostatic methods [10-17] have been developed during the past years. For most of the VEHD, the 
performance of the devices has been generally studied with a few governing equations [18]. However, 
there is not much attention has been paid for the damping force in the energy harvesters. In this paper, 
we will study how the air pressure affects the performance of VEHD. 

To evaluate the air pressure effect, we have designed an electrostatic VEHD with an out-of-the-
plane gap closing scheme, as shown in Figure 1. The device can be simply regarded as a variable 
capacitor with parallel electrodes on two separate plates as shown in Figure 2. When the proof mass is 
driven by an ambient vibration source, induced charge caused by the pre-charged CYTOP electret 
moves back and forth between the two electrodes, which generates a current through an external load. 
The overall size of the device we used is about 13×18 mm2, and the surface potential of the electret is 
charged to about -400 V. During the vibration, the squeeze air damping force would affect the 
mechanical performance of the proof mass and therefore influence the output power. 
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bandwidth of about 30 Hz (from 142 Hz to 172 Hz) has been observed at an acceleration of 1.8 m/s2. 
This is because large vibration amplitude could be easily reached when low air pressure is applied in 
the chamber. As it is shown in Figure 7(a), a maximum displace of the proof mass is measured up to 
250 μm, which is exactly the gap between the stoppers of the two plates.  

2.2.  Output power with changing air pressure 
The energy loss caused by air pressure damping can be clearly seen in this part. When the chamber 
pressure is increased, higher vibration amplitude is needed to achieve the same power, as shown in 
Figure 5.  

The air damping effect can be more clearly seen in Figure 6. With a fixed vibration amplitude of 1.2 
m/s2, the RMS power of the device at resonance decreases gradually from 2.2 μW to about 0.02 μW 
when the chamber pressure increases from 4 Pa to atmosphere. 

 

 
A more detailed study has been done to investigate the waveform of the displacement and the 

voltage output when the chamber pressure is increased, as shown in Figure 7. The displacement 
amplitude of the proof mass decreases/stabilizes to 55 μm under a chamber pressure of 2800 Pa, and 
the voltage output amplitude increases from 0.1 V to 0.65 V. Nonlinearity can be observed at the 
ambient gas pressure of 239 Pa, and it is more obvious at 4 Pa. The nonlinearity effect is mainly due to 

 

Figure 5. The output power of the energy 
harvester with increased acceleration 
amplitude under different air pressure of 4 Pa, 
5800 Pa and 105 Pa, respectively.  
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Figure 6. The output power of the energy 
harvester at resonance with chamber pressure 
increased from 4 Pa to atmosphere.  
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Figure 7. (a) The displacement of the proof mass and (b) the waveform of the voltage output on R0 
at the same vibration amplitude of 1.2 m/s2 when the chamber pressure is tuned to 4 Pa, 239 Pa, 
2800 Pa and 28000 Pa, respectively.
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the fact that the capacitance between the two electrodes is inversely proportional to gap distance [16]. 
Furthermore, when the two plates of device get close enough, the electrostatic force will influence the 
output voltage. 

3.  Conclusion  
A primary research was made to find the effect of air pressure damping on VEHD. A broadened 
bandwidth can be observed when the acceleration is increased from 0.5 m/s2. At a low air pressure of 4 
Pa, maximum power output of 2.2 μW can be achieved with a low acceleration of 0.5 m/s2. When the 
air pressure increases up to atmosphere, the power output drops down to 0.02 μW. When the ambient 
gas pressure is low enough, the waveform of the voltage output will become nonlinear for the 
variation of the capacitance.   
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