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Abstract. This paper presents the influence of nonlinear terms of a previously proposed 

constitutive piezoelectric equation on the dynamics of a cantilever aluminium beam with a 

piezoelectric unimorph PZT (MIDE QP16N) attached to it. The system is subjected to different 

levels of base acceleration with the intention to evidence the limits of the linear model. To 

carry out the analysis, a one-dimensional model is applied and solved employing a single-term 

solution of the harmonic balance method to compare with the experiments. A model 

identification of linear and nonlinear parameters such as dissipation, stiffness, and 

electromechanical coupling were then performed. From the results, it is possible to observe the 

departure of the linear model even for very low acceleration levels (0.1G). It can be concluded 

that the nonlinearity plays an unavoidable roll in predicting electric generation for the 

considered systems. 

1.  Introduction 

Nonlinearity in piezoelectric beams is a challenging and complex phenomenon. Although it is 

commonly supposed that a linear description captures the principal features of the mechanical and 

electrical response of a piezoelectric material under usual practical situations, its behavior is far from 

being linear even for low values of mechanical and electrical excitation. There are several factors that 

make the dynamics to be nonlinear. Between them, it is possible to mention strong electric fields [1, 

2], damping, influence of adhesive layer, nonlinear beams theories, nonlinear constitutive equations 

under nonlinear elastic and electromechanical coupling, among others [3]. The observed discrepancy 

between linear model and experiments is evident even at weak electric fields. 

Non-linear theory of dielectrics has been developed by the pioneering works of Toupin [4] and 

Tiersten [5]. Joshi [6] employed the thermodynamic Gibbs potential to derive constitutive equations 

including higher order effects up to second order terms in the linear formulation. Aurelle et. al.  [7] 

studied the effect of a nonlinear electromechanical coupling parameter and nonlinear elasticity on the 

response of a piezoelectric transducer. Wagner and Hagedorn [2] studied the nonlinear elastic and 

coupling behavior of piezoelectric beam actuators, proposing an enthalpy density with quadratic and 

cubic nonlinearities of strain and coupling. The first approach to study nonlinear piezoelectricity in a 

harvester was published by Hu [8]. His results show a hardening response of a piezoelectric plate due 

to a shear mode vibration. Triplett and Quinn [9] proposed a strain dependence of the piezoelectric 
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constant as responsible for nonlinearity in the electromechanical equations. In a first work Stanton et. 

al. [10] used the nonlinear constitutive equations of ref. [8] in a bimorph PZT 5H and proposed a 

nonlinear quadratic damping to account for the theoretical overshoot of experimental data. In a second 

work, the same author and collaborators [11] extended the nonlinear constitutive relations to include 

non-conservative stress and electric displacement to introduce dissipation within electroelastic media. 

Abdelkefi et. al. [12] performed a nonlinear analysis of a multi-layered piezoelectric beam with a tip 

mass taking into account geometric and piezoelectric nonlinearities into the electromechanical model. 

The constitutive relations of the piezo are derived using the approach of Joshi [6]. Goldshmidtboeing 

et. al. [13] attributed to ferroelastic hysteresis the source of nonlinearities in PZT cantilever beams.  

They modelled the constitutive nonlinear equations and nonlinear dissipation effects with the simplest 

hysteresis model, the Rayleigh model, to obtain their theoretical predictions. More recently, 

Leadenham and Erturk [14] based on the work of refs [2,13] proposed their own enthalpy density 

expression which predicts a linear backbone curve in the response amplitude of a bimorph 

piezoelectric sheet. Finally, Yang and Upadrashta [15] considered a nonlinear electromechanical 

model and damping nonlinearities to model a cantilever macro-fiber composite for energy harvesting. 

They proposed to identify nonlinear elastic and damping coefficients by matching analytical responses 

and experimental results. As a consequence, a high-order stress/strain relationship is obtained which 

contains seven polynomial terms to fit the experimental data up to very high strains.   

In this paper we used the model of Leadenham and Erturk [14] to investigate the validity of their 

model applied to an energy harvesting system (EH) containing a unimorph piezoelectric sheet. In most 

of the works mentioned previously, high resonant frequencies were considered to study the behaviour 

of piezoelectric materials [10 - 14]. Only Yang and Upadrashta [15] investigated a harvester working 

at low frequencies with large deformation but with another model of dissipation, not considering the 

ferroelastic hysteresis. 

2.  Design and Modelling 

The model of the proposed EH system comprises an aluminum cantilever beam with a piezoelectric 

unimorph PZT sheet (MIDE QP16N) attached at its root. The system is excited by its base with 

constant acceleration level, observed schematically in figure 1. The mathematical model is based on 

the Bernoulli-Euler theory for flexural beams. The electric field is considered uniform and linear over 

the thickness of the piezo sheet and the constitutive relations (stress/strain+electric field/electric 

displacement) contain nonlinear elastic terms, linear and nonlinear electromechanical coupling and 

dissipation effects due to ferroelastic hysteresis as stated in [13].  

 

 

 
 

 

 

 

Figure 1: Schematic picture of the system and 

its geometric parameters. 
Figure 2: Experimental response curves 

at various excitation amplitudes. 
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2.1.  Mathematical formulation  

Following the conclusions of Leadenham and Erturk [14], we also observed in the experimental results 

that the backbone curve changes linearly with the response amplitude (see figure 2). Therefore, to 

address the nonlinear problem of the constitutive model, we consider the enthalpy density for the 

substrate 𝐻𝑠 and for the piezo beam 𝐻𝑝as [14]:   

𝐻𝑠 =
1

2
𝑐11

𝑠𝑆1
2 (1) 
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where 𝑐11
𝑠 y 𝑐11

𝑝 are the Young modulus of the aluminum and the piezo sheet respectively, 𝑐111
𝑝 is the 

third order nonlinear elastic modulus, 𝑒31 is the linear piezoelectric constant, 𝑒311 is the third order 

nonlinear piezoelectric constant, 𝜖33 is the piezo permittivity and 𝐸3 is the electric field in the transverse 

direction given by 𝐸3 = 𝑣(𝑡)/ℎ𝑝 (𝑣(𝑡) is the voltage).  

As mentioned previously, to account for the dissipation, the model of ferroelastic hysteresis of [13] 

provides a dissipation energy as 𝐷𝑝 =
1

3
𝑏111𝑆1

3
, whereas the damping for the substructure is 

modelled as simple proportional damping. Kinetic and potential energy of the piezo and the 

substructure can be obtained in a straightforward manner following [14] with the only difference that 

here, we consider a unimorph piezoelectric beam [16].  

2.2.   Governing equations 

Two governing electromechanical equations have been derived using Lagrange equations, with a 

single-mode solution for the first bending mode: 

 

𝑚𝑞̈[𝑡] + (𝑏𝑞[𝑡]𝑠𝑔𝑛(𝑞[𝑡]) + 𝑏𝑛𝑞[𝑡]2)𝑠𝑔𝑛(𝑞̇[𝑡]) + 𝑘𝑞[𝑡] + 𝑘𝑛𝑞[𝑡]2𝑠𝑔𝑛(𝑞[𝑡])

− (𝜃 + 𝜃𝑛𝑞[𝑡]𝑠𝑔𝑛(𝑞[𝑡]))𝑣[𝑡] = −𝑚𝑎𝑔̈[𝑡] 
(3) 

𝐶𝑝𝑣̇[𝑡] +
𝑣[𝑡]

𝑅𝑙
+ (𝜃 + 𝜃𝑛𝑞[𝑡])𝑞̇[𝑡] = 0 (4) 

Where 𝑚, 𝑏, 𝑏𝑛, 𝑘, 𝑘𝑛 , 𝜃, 𝜃𝑛, 𝑚𝑎 , 𝐶𝑝, 𝑅𝑙 are the modal mass, linear and nonlinear damping, linear and 

nonlinear electromechanical coupling, modal forcing mass, internal capacitance of the piezoelectric 

unimorph sheet and load resistance. These lumped parameters are functions of the device dimensions 

and material properties and are given in [14]. The nonlinear differential equations are further solved 

analytically using a single-term solution in the harmonic balance method, so that the dynamic response 

of the system is obtained. From this, it is possible to find the voltage 𝑣[𝑡] to compare it with the 

experiments. 

3.  Experiments and Results 
 

The experiments were carried out using the setup of figure 3. We considered a large range of 

accelerations ranging from 0.1-3.0 G (G=gravity =9.8m/sec2). The sweeps for each acceleration 

amplitude were performed at constant amplitude. Material and geometrical constants of the EH system 

are given in table 1.  
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Table 1. Geometrical and material constants. 

Parameter Alum. QP16N 

Length (mm) 80 45.9  

Width (mm) 21  20.57  

Thickness (mm) 0.5  0.25  

Density (kg/m3) 2700  7800  

Young`s modulus 

(GPa) 

67 67  

Coupling d31(pm/V)  -190  

Capacitance (nF)  90.78 

Permittivity  1500
0  

 

 

 

 

 
 

 

In order to apply and solve the model of the proposed device, it was necessary to make an 

identification of linear and nonlinear parameters (𝑏, 𝑏111, 𝑐111, , 𝑒311). To this end, the experimental tests 

for an acceleration level of 3 G were used. After that, we employ a least squares technique (lsqnonlin 

command in Matlab) along with the proposed analytical model to extract the more approximate values in 

a least squared sense. The obtained values are: 𝑏11 = 3.59 109 N/m2, 𝑏111 = 6 1013 N/m2 , 𝑐111 =

−303.44 TPa and 𝑒311 = −68.15
kC

m2 . These values are fed into the analytical model and plot together 

with the experimental results. The comparison can be observed in figure 4 where both linear and 

nonlinear responses are shown along with the experiments for accelerations ranging from 0.1-3G. As a 

first singular feature, it is possible to observe that the curves bend to the left (softening response) as the 

amplitude of the base acceleration increases. This clearly represents a significant departure of the linear 

regime. Even for low accelerations levels (0.1G) the linear prediction is poor. For larger accelerations, 

instead, the nonlinear model represents an accurate description of the voltage generation. A very good 

Figure 4: Comparison between experimental and linear/nonlinear responses for accelerations 

ranging from 0.1 to 3 G 

 

Figure 3.  Experimental setup (left), zoom in of the 

EH system (right) 

. 
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agreement can be appreciated for all the performed tests including the maximum value of 3G. In this 

case, the voltage peak amplitude diminishes four times compared with its linear counterpart and the 

system’s natural frequency (frequency peak) decreases up to 102 Hz, almost 6 Hz less than the linear 

frequency of 108.6 Hz. An interesting analysis can be observed for the 3G case. There, we plot the 

contribution of the nonlinear parameters (𝑏111, 𝑐111 and 𝑒311) on the FRF curves. The linear response 

amplitude is reduced considerably by means of nonlinear damping 𝑏111 while the nonlinear elastic 

modulus 𝑐111is responsible for the softening behavior of the EH system. The third order nonlinear 

piezoelectric constant 𝑒311 plays a secondary role in this case. 

4.  Conclusions  

In this paper, the dynamic behavior of a cantilever beam with a piezoelectric unimorph sheet (MIDE 

QP16N) attached to an aluminum beam subjected to different levels of acceleration, was studied for 

low frequency energy harvesting purposes. A non-linear constitutive model for the piezoelectric sheet 

was used, which was previously proposed by Leadenham and Erturk [14] for a bimorph EH system. 

The model takes into account the effect of ferroelastic hysteresis resulting in terms of nonlinear 

stiffness and nonlinear dissipation. The results evidence a very good agreement between the nonlinear 

analytical model and the experiments, even though for low levels of base acceleration. Therefore, it is 

concluded that the model correctly predicts the dynamic behavior of the studied system. This contrasts 

definitively with the application of the linear model for these cases. Future efforts will be conducted to 

explore the effect of ferroelastic hysteresis in macro-fiber composite EH, considering the piezoelectric 

33 and 31-effects. 
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