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Abstract. Social scientists are often interested in examining causal relationships where the 

outcome of interest is represented by an intangible concept, such as an individual’s well-being 

or ability. Estimating causal relationships in this scenario is particularly challenging because the 

social scientist must rely on measurement models to measure individual’s properties or attributes 

and then address issues related to survey data, such as omitted variables. In this paper, the 

usefulness of the recently proposed behavioural Rasch selection model is explored using a series 

of Monte Carlo experiments. The behavioural Rasch selection model is particularly useful for 

these types of applications because it is capable of estimating the causal effect of a binary 

treatment effect on an outcome that is represented by an intangible concept using cross-sectional 

data. Other methodology typically relies of summary measures from measurement models that 

require additional assumptions, some of which make these approaches less efficient. 

Recommendations for application of the behavioural Rasch selection model are made based on 

results from the Monte Carlo experiments. 

1. Introduction

The social sciences are often interested in measuring properties or attributes of individuals with no 

clearly defined physical referent (intangible concepts), such as attitudes, values, beliefs, well-being, 

health, or ability. For the measurement of these concepts to be valid and reliable, it must be supported 

by both social science and measurement theory. Social science theory allows the researcher to clearly 

define the concept that is to be measured and develop an instrument while measurement theory provides 

the foundation for establishing and validating the instrument’s corresponding scale. Many social 

scientists rely on item response theory (IRT) models, such as the Rasch model [3] to develop and validate 

their scales. 

Researchers in the social and physical sciences undertake the measurement of concepts with 

and without physical referents to confirm, reject, and refine research hypotheses. Findings from the 

testing of hypotheses advance theory and inform policymakers. Properly testing a hypothesis requires 

the careful design of an experiment, whether it is in the laboratory or using a social survey. Physical 

scientists often have the advantage of using randomized experiments with carefully constructed 

treatment and control groups. While randomized experiments are arguably the best way to test a 

hypothesis, they are often costly, time consuming, and for social scientists, one must consider the ethical 

1 The views expressed in this paper are those of the author and do not necessarily reflect those of the Economic 

Research Service or the U.S. Department of Agriculture. 
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issues associated with human subjects. Alternatively, researchers may rely on natural experiments or 

statistical methodology to identify causal relationships when randomized experiments are not feasible. 

Estimating causal relationships is particularly challenging when using survey data, as key 

characteristics essential to social science models may be omitted. When this occurs bias is introduced 

into the analysis, potentially contributing to counterintuitive or misleading findings. This occurs because 

the treatment and control groups are not randomized, ensuring the sample is not representative of the 

population intended for analysis. Self-selection bias ensues because individuals select into treatment and 

control groups based on their observable and unobservable characteristics. 

 This paper examines the usefulness of a recently proposed model, the behavioural Rasch 

selection model [2], by conducting a Monte Carlo study of the model’s properties. The Monte Carlo 

study undertaken here is the first to examine the behavioural Rasch selection model and will be used to 

provide guidance for researchers interested in implementing the model in their own analyses. The 

behavioural Rasch selection model is particularly useful for social science researchers because it is 

capable of estimating the causal effect of a binary treatment effect on an outcome that is represented by 

an intangible concept using cross-sectional data. The behavioural Rasch selection model maintains all 

of the Rasch model assumptions while incorporating a multivariate behavioural component and 

addressing selection on contemporaneous unobservable characteristics. Identification of the model is 

achieved using exclusion restrictions in the form of instrumental variables.  

2. Methodology

IRT models, such as the Rasch model, are particularly useful for measuring an individual’s properties 

or attributes when no clear physical referent exists by formulating them as latent traits. For the purposes 

of this paper, the Rasch model is framed to measure an individual’s ability; however, it could just as 

easily be altered to measure an individual’s well-being, health, food security, or attitudes and beliefs. 

The Rasch measurement model assumes individual i’s underlying unobservable (latent) index of ability 

is θi, with the property that higher values of the index correspond to greater ability. Assuming there are 

N individuals administered J binary questions (e.g., yes or no.) that capture different levels of ability, 

then the probability that the individual affirms the jth question is 
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i j
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where exp(∙) is the exponential function and δj is a threshold or “calibration” parameter. The model 

further assumes that the individual’s responses to each question are independent, conditional on θi, and 

that the factor loadings (discrimination parameters) are constrained to be equal across all items and 

normalized to one.  

An attractive property of the Rasch model for statistical inference is that if all individuals’ 

responses to the questions follow this model and if the individuals answer all J items, then their latent 

ability can be ranked and compared using simple counts of the number of affirmed items. Formally, the 

count of affirmed items, commonly referred to as the raw score, is a sufficient statistic for θi.  

Summary measures have proven very useful for social scientists interested in examining the 

relationships between an intangible concept and other variables. Rasch scores may be used to estimate 

continuous regression models, such as Ordinarily Least Squares (OLS).  However, for these models to 

be identified, all observations with extreme values (all affirmative or negative responses) to an 

instrument’s questions (the majority of respondents for many instruments and surveys) may have to be 

dropped from the analysis sample prior to estimation depending on how the Rasch model is estimated 

(e.g., joint or conditional maximum likelihood.). Alternatively, the raw score may be used to estimate 

count data regression models for samples of individuals with no missing responses to an instrument’s 

questions. Missing responses many also be imputed, but the accuracy of these imputations must be 

assessed.  
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The Rasch model can also be extended to incorporate a multivariate behavioural component 

for cases in which social scientists are interested in examining the relationship between the latent trait 

and other variables. Specifically, one may assume that individual i’s latent ability, θi, depends on an 

observed treatment (Ti), control characteristics (Xi), and an unobserved variable (ei) such that 

i i X i i

'

TT X e .      (2) 

It is common practice to assume that ei ~ N(0, σ2) for identification purposes. Combining specifications 

(1) and (2) yields the behavioural Rasch model2 [5].  

Using the behavioural Rasch model has several advantages over summary measures for this 

type of inference. Methodologically, the behavioural Rasch model is similar to a regression model where 

the dependent variable is the Rasch score. The main difference is that the behavioural Rasch model 

estimates specifications (1) and (2) jointly, while regression models involving the Rasch score estimate 

these parameters in two steps. Regression models involving Rasch scores may also draw different 

samples, as individuals with extreme scores may be excluded, depending on the methodology used to 

produce the Rasch scores. The behavioural Rasch model, on the other hand, can incorporate individuals 

with extreme scores. Another advantage of the behavioural Rasch model is its ability to impute missing 

values by virtue of the Rasch measurement model’s properties. 

Estimating the causal effect of a treatment on an intangible outcome is further complicated by 

the endogeneity of the decision to select into the treatment group (to be treated). Behavioural Rasch 

models are able to control for selection on an individual’s observable characteristics, but do not account 

for selection on an individual’s unobservable characteristics. More formally, the individual’s decision 

to select into the treatment group is 

X i

'

Z i

i

'

i1 if  X Z u 0
T

0 otherwise

    
 


(3) 

where Ti and Xi are defined above, Zi is a set of instrumental variables, and ui is an unobserved variable. 

For identification purposes, one may assume ui ~ N(0, 1)3; however, it need not be. The resulting model 

is consistent with a probit model for the decision to select into the treatment group. 

The endogeneity of the treatment can be formalized, as in [2] and [4], by assuming the error-

component in specification (2) can be decomposed into ui and ei
*, such that ei = λui + ei

*. Thus, the 

individual’s latent ability index can be respecified as 

'* *

i i X i i iT euT X     (4) 

where λ is an unknown factor loading (selection) parameter to be estimated, and ei
* represents the new 

unobserved variable after controlling for observed and unobserved variables (heterogeneity). It is 

assumed that ei
* ~ N(0, η2). Correlation between the treatment variable (Ti) and the latent ability is 

generated through the factor loading parameter, λ. If λ is estimated to be nonzero, ui influences the 

individual’s selection into the treatment group and the likelihood of affirming a question, rendering the 

baseline behavioural Rasch model inconsistent and biased.  

An estimator for the behavioural Rasch selection model, which combines specifications (1)-

(3), was proposed by [2] and tested on survey data. In this paper, [2] derived the likelihood function for 

the behavioural Rasch selection model, which is as follows: 

2 The behavioral Rasch model is equivalent to the person-level explanatory Rasch model described in [5]. 
3 Alternatively, one may assume that ui is time-invariant and estimate a model that combines specifications (1)-(4) 

using panel data methods. For an example of this approach, see [1]. 
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where the ‘i’ subscript denotes the ith sample household (i = 1, …, N). The proposed model allows for 

all of the parameters to be jointly estimated using full information maximum likelihood (FIML). It is 

useful to note that the factor loading parameter, λ, is a sufficient statistic for exogeneity of the treatment 

decision.  

In the current paper, I estimate the likelihood function specified in (5) using the Stata code 

provided by [2]. The Stata program approximates the two-dimensional integral using Gauss-Steen and 

Gauss-Hermite quadrature techniques for the first and second integrals, respectively. All models 

programs were executed using State 13 2-Core Multiprocessor statistical software. 

3. Monte Carlo Study Design

The data generating process was designed to examine the performance of the behavioural Rasch 

selection model with samples of varying size (in terms of number of individuals). The instrument length 

was held constant across the samples to assess how many individuals would need to be surveyed in real-

world data for reliable inference. Four separate experiments were performed using 500, 1,000, 5,000, 

and 10,000 observations and an instrument that consisted of 5 questions. For each sample size, 1,000 

repetitions were completed and 8 quadrature points were used for each level of integration to 

approximate the integrals. 

Data for each experiment were generated according the following assumptions. 
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4. Results

Estimates for the Monte Carlo experiments were obtained by estimating the behavioural Rasch selection 

model using simulated data generated by the procedure outlined above. Summary statistics for the 

experiments are reported in Table 1, and include each parameter’s average, standard deviation, and mean 

square error. The top, middle, and bottom panels contain summary information for the selection, 

outcome, and error-component equations, respectively. The columns report the true value and summary 

information, separately, for each of the experiments by sample size.  

Estimates from the selection equation presented in the top panel of Table 1, which was 

estimated jointly with the other equations, performed very well, regardless of sample size. Average 

parameter values were close to their true values, even in smaller sample sizes, suggesting modest bias. 

For example, the percent bias in the smallest sample (N = 500) ranged from .03 to 1 percent, while bias 

in the largest sample (N = 10,000) ranged from 0.1 to 0.2 percent. As the sample size increases, the 

standard deviation of the selection equation parameters declines in magnitude. 
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Table 1.Monte Carlo Summary Statistics for the Behavioural Rasch Selection Model: Average, 

Standard Deviation, and Mean Square Error of the Coefficients. 

True 

Value 

Sample Size 

500 1,000 5,000 10,000 

Selection (Treatment) Equation 

αX 1.000 1.010 0.999 1.003 1.001 

(0.206) (0.137) (0.067) (0.045) 

[0.043] [0.019] [0.005] [0.002] 

αZ 1.000 0.997 1.009 1.000 1.002 

(0.204) (0.145) (0.064) (0.044) 

[0.041] [0.021] [0.004] [0.002] 

αConstant -1.000 -1.006 -1.007 -1.002 -1.002 

(0.162) (0.110) (0.050) (0.035) 

[0.026] [0.012] [0.003] [0.001] 

Outcome Equation 

βTreatment 1.000 0.979 1.031 0.988 0.999 

(0.933) (0.615) (0.268) (0.191) 

[0.871] [0.379] [0.072] [0.037] 

βX 1.000 1.031 0.996 1.010 1.003 

(0.541) (0.370) (0.154) (0.113) 

[0.293] [0.137] [0.024] [0.013] 

βConstant -1.000 -1.006 -1.015 -0.997 -1.002 

(0.364) (0.241) (0.109) (0.077) 

[0.132] [0.059] [0.012] [0.006] 

δ1 -0.600 -0.608 -0.606 -0.598 -0.601 

(0.175) (0.124) (0.056) (0.038) 

[0.031] [0.015] [0.003] [0.001] 

δ2 -0.300 -0.304 -0.303 -0.299 -0.299 

(0.174) (0.121) (0.055) (0.037) 

[0.030] [0.015] [0.003] [0.001] 

δ4 0.300 0.305 0.296 0.302 0.299 

(0.170) (0.117) (0.056) (0.039) 

[0.029] [0.014] [0.003] [0.002] 

δ5 0.600 0.605 0.602 0.602 0.600 

(0.169) (0.120) (0.055) (0.039) 

[0.029] [0.014] [0.003] [0.001] 

Error Components 

ln(η2) 1.000 0.923 0.977 0.993 0.995 

(0.269) (0.154) (0.064) (0.044) 

[0.078] [0.024] [0.004] [0.002] 

λ 1.000 1.027 0.990 1.008 1.001 

(0.606) (0.402) (0.172) (0.125) 

[0.368] [0.162] [0.029] [0.015] 

Note: Models estimated using simulated data with varying number of individuals and a constant 

instrument length of 5 items. Standard deviations are in parenthesis and mean square errors are in 

brackets. 

The primary coefficient of interest, an estimate of the treatment’s effect, is shown in the middle 

panel of Table 1. The behavioural Rasch selection model is able to obtain reliable estimates of this effect, 

even in smaller samples, albeit biased downwards (with the exception of the N = 1,000 experiment 
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where it is biased upwards).  The model appears to perform best with samples that are greater than or 

equal to 5,000 observations. For the experiments with the two largest sample sizes, the percent bias 

ranges from -1.2 percent to -0.1 percent. Significant gains in terms of mean square error are also 

observed moving from a sample size of 1,000 to 5,000 or more observations.  

The bottom panel of Table 1 contains estimates of the model’s error components. Of particular 

interest are the parameter estimates for the factor loading, λ, which describes the degree of selection in 

one’s sample. Estimates of the selection parameter are underestimated in the experiment with the 

smallest sample size and overestimated in the other experiments. The percentage bias for this parameter 

was relatively small across all experiments, ranging from 2.7 percent to 0.1 percent in the experiments 

with 500 and 10,000 observations, respectively. Once again, significant gains in terms of mean square 

error are observed for this parameter moving from a sample size of 1,000 to 5,000 or more observations. 

Estimates of the variance for the latent trait are reasonable in samples with 1,000 or more observations. 

5. Conclusion

Social scientists are often interested in examining causal relationships for the purposes of informing 

theory or policy. Examination of these types of relationships become even more challenging when the 

outcome of interest is represented by an intangible concept. When intangible concepts are involved in 

research, the social scientist must appeal to measurement methodology, such as item response theory, 

to develop and validate a scale. After a scale is constructed, the social scientist may use various 

approaches to model the relationships of interest. In the current paper, I examine the usefulness of 

applying the recently proposed behavioural Rasch selection model to situations in which the researcher 

wishes to estimate the causal effect of a binary treatment effect on an outcome that is represented by an 

intangible concept using cross-sectional data.  

Results from the Monte Carlo experiments suggest that the behavioural Rasch selection model 

is consistent and has modest bias in samples of size 500 or more. While the Monte Carlo experiments 

did not assess the effect of instrument length, the choice of an instrument with only 5 questions provides 

confidence that performance will only improve as the length of the instrument increases. While the 

behavioural Rasch selection model performed reasonably in all of the experiments, significant gains, in 

terms of mean square error, were observed for samples with 5,000 or more observations. Thus, it is 

recommended that the model be applied to samples with at least 5,000 observations. For those with 

smaller samples, careful attention should be paid to the statistical power they will have in their sample. 

In these cases it may be useful to conduct a power analysis.  

Acknowledgements 

The author would like to thank David C. Ribar at the Melbourne Institute of Applied Economic and 

Social Research for helpful comments.  

References 

[1] Moffitt, R. A., & Ribar, D. C. (2016). Rasch Analyses of Very Low Food Security Among 

Households and Children in the Three City Study. Southern Economic Journal, 82(4), 1123-

1146. 

[2] Rabbitt, M. P. (2013). Measuring the Effect of Supplemental Nutrition Assistance Program 

Participation on Food Insecurity Using a Behavioral Rasch Selection Model.Working Paper 

No. 13-20. University of North Carolina at Greensboro, Department of Economics. 

[3] Rasch, G. (1960). Studies in Mathematical Psychology: I. Probabilistic Models for Some 

Intelligence and Attainment Tests. 

[4] Terza, J. V. (2009). Parametric Nonlinear Regression with Endogenous Switching. Econometric 

Reviews, 28(6), 555-580. 

[5] Wilson, M., & De Boeck, P. (2004). Descriptive and Explanatory Item Response Models. 

Explanatory Item Response Models: A Generalized Linear and Nonlinear Approach, 43-74. 

IMEKO2016 TC1-TC7-TC13 IOP Publishing
Journal of Physics: Conference Series 772 (2016) 012048 doi:10.1088/1742-6596/772/1/012048

6


