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Abstract.

The article deals with the problem of providing the necessary parameters of air of the working
area in dead-end tunnels in the case of ventilation systems powered off. An ill-posed initial-
boundary problem for the diffusion equation is used as a mathematical model for a description
and analysis of mass transfer processes in the tunnel. The neural network approach is applied
to construct an approximate solution (regularization) of the identification problem in the case
of the approximate measurement data and the set of interval parameters of the modeled system.
Two types of model measurements included binary data are considered. The direct problem
solution and the inverse problem regularization for the offered neural network approach are
constructed uniformly.

1. Introduction

Air pollution of the human environment reduces the duration of his life, leading to a variety of
serious diseases. In his professional activity, a person is exposed to a greater number of harmful
factors that constantly requires the development of additional security measures, which can not
be carried out without research and theoretical work.

During the construction of underground structures, tunnels for different purposes (for
example, underground roads and railways) one of the most important tasks to ensure the
safety of the operations is to control the parameters of the air environment, which may be
contaminated sources of different origin. Normalization of air mainly achieved using rational
ventilation system. However, during the construction and operation may be necessary to conduct
a number of studies, for example, repair, in the absence of ventilation or disable it.

2. Problem statement

The paper goes on to study the problems with a nonstandard statement [1-6]. Here we construct
a mathematical model for the dissemination of harmful substances from the source, which
is located in the depths of the tunnel. This model allows for the concentration of harmful
substances at the outlet to determine the distribution of dangerous concentration zones for such
substances through the tunnel.

The problem of identification arises when environmental forecasting the state of air quality
in the tunnel; a diffusion equation in a moving medium (and some pieces of heterogeneous
information about a concentration of the pollutant) is the basis of a mathematical model:
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Let the pollutant concentration Φ = Φ(x, t) in the area I = [0;L] ⊂ R at the time t ∈ (0;T )
satisfies the following initial-boundary-value problem











∂Φ
∂t

+ u∂Φ
∂x

− σ ∂2Φ
∂2x

+ τΦ = P,
Φ(x, 0) = Φ0(x),
Φ(0, t) = Φ1(t),

(1)

here the function P (x, t) =
∑k

s=1 ps(t)δs(x;xs) characterizes the power of pollution sources, ps(t)
– the power of the s-th contamination source distributed in a neighborhood of xs with a density
δs(x;xs), u – the speed, σ – the coefficient of turbulent diffusion, τ > 0 – the parameter that
determines the intensity of the absorption of the pollutant due to its entrainment, deposition,
chemical reactions, etc.

It is expected that there is no initial contamination throughout the tunnel Φ0(x) = 0,
0 ≤ x ≤ L. No contamination is at the entrance to the tunnel Φ1(t) = 0, 0 ≤ t ≤ T.

By the replacement of variables Φ(x, t) = exp(ax+ bt)U(x, t), P (x, t) = exp(ax+ bt)Q(x, t),
where a = u/2σ, b = −τ − u2/4σ, the differential equation can be transformed into the heat
equation

∂U

∂t
− σ

∂2U

∂x2
= Q (2)

with appropriate initial and boundary conditions on the function U

U(x, 0) = U0(x) = 0, U(0, t) = U1(t) = 0. (3)

Note that the assignment of boundary conditions of the form ( ∂
∂x

Φ− u
2σΦ)(L, t) = 0 at the end

of the tunnel results in the function U to the homogeneous Neumann condition ( ∂
∂x

U)(L, t) = 0.
Next, we will consider the transformed task for the function U . The coordinates x, t are

normalized so that L = 1, T = 1. The problems with the proposed statement (as power sources
and part of the boundary conditions at the end of the tunnel are not listed) are ill-posed - they
are in need of additional data.

Suppose that, instead of the missing data conditions, we know some experimental observations

U(x̃j , t̃j) = ϕj , j = 1, . . . ,m, (4)

obtained with a set of sensors, {(x̃j , t̃j)}mj=1 ∈ [0; 1]×[0; 1]. The challenge is to find an approximate
solution to the problem – the function U and the restoration of the source – the functionQ as well.
Another option of setting the identification problem is the restoration of the initial conditions.

3. Neural network approach

The approach proposed [1-4] allow us to bring together pieces of heterogeneous information about
the system in the neural network model, use the regularizing properties of neural networks for
solving inverse and ill-posed problems.

An approximate solution of the identification problem can be found in the form of a system
output of two artificial neural networks of a given architecture

U(x, t;σ) =
N1
∑

i=1

cigi(x, t;σ,ai), (5)

Q(x, t) =
N2
∑

i=1

dihi(x, t;bi), (6)

IMEKO2016 TC1-TC7-TC13 IOP Publishing
Journal of Physics: Conference Series 772 (2016) 012035 doi:10.1088/1742-6596/772/1/012035

2



which weights – linearly incoming parameters ci, di and nonlinear input parameters ai, bi – be
determined in the process of gradual learning network based on the minimization of the error
functional given in a discrete form

J =
M
∑

j=1

(
∂U

∂t
−σ

∂2U

∂x2
−Q)2(xj , tj)+λ0

M0
∑

j=1

U2(xj , 0)+λ1

M1
∑

j=1

U2(0, tj)+λ
m
∑

j=1

(U(x̃j, t̃j)−ϕj)
2. (7)

Here {(xj , tj)}Mj=1 – periodically regenerated sampling points in [0; 1] × [0; 1], {(xj , 0)}M0

j=1,

{(0, tj)}M1

j=1, – sampling points on the border areas; λk > 0 – positive penalty coefficients.
In this problem of modeling air pollution in tunnels, the assessment of the concentration in

the main part of the tunnel is more important than identifying the source, so we can find the
neural network approximation to the function U minimizing the error functional J without the
source Q in the first term. In this case, the first sum is taken over the sampling points of the
part of the variable region such that it is known that Q = 0.

4. Measurement data modeling

We found some analytical solutions of the problem (for the given Q(x, t) and the boundary
conditions added at the end of the tunnel); these solutions were used when setting the
”experimental measurements” ϕj . We choose, for example, nonhomogeneous Neumann’s
condition (linear on t increase in derivative) as an additional one ∂xU(1, t) = t, then the
approximate model solution is given by [7]

Ũ(x, t) ≈ tx− x

2
+

x3

6
+

100
∑

n=0

sin π(2n+1)x
2

(2n+ 1)4
(−1)n exp

−π2(2n+ 1)2t

4
. (8)

Using Ũ we generate the data of observations Ũ(x∗, t̃j) = ϕj , j = 1, . . . ,m, taken near the
exit of the tunnel x∗ = 0.1. Also, this function is used to check the result of solving the problem.

For modeling are offered two cases. If the special device measures data and captures the
accurate model values we use the values of the function Ũ(x, t) at equidistant points t̃i of the
time interval at fixed x∗

G1(ti) = Ũ(x∗, t̃i), (9)

In another case, the binary data is created. We consider a concentration above the critical
level as the availability and lower as the absence of harmful emissions in the air. So this data
has a certain error. The data generation held by the next rule

G2(ti) =

{

β, Ũ(x∗, ti) + ε(2ξ − 1) > α;

0, Ũ(x∗, ti) + ε(2ξ − 1) ≤ α,
(10)

where ε is a measurement error and can take the big values, ξ is a standard uniformly distributed
random value, α is a sensitivity threshold, ti ∈ [0, 1], β = 2α.

In the second case we considered a condition corresponded to the impermeability of the right
end of the tunnel. The allocation of constant intensity is on the right end of the tunnel at the
part of d = length.

Then the approximate model solution is given by [7]

Û(x, t) =
16

π3

+∞
∑

n=0

sin π(2n+1)x
2 sin π(2n+1)d

2

(2n + 1)3
· (−1)n(1− exp

−π2(2n + 1)2t

4
), (11)

where d = 0.1.
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5. Calculations

We construct a neural network model for our task on all available data. This is the equation
(2), the boundary conditions (3), and measurement data (9)–(10). The selection of the model
parameters (the weights of the neural network) is based on the error functional minimizing. The
error functional optimization is conducted by RProp and Particle Swarm algorithms [9]. As
basic elements of the neural network gi, different types and number of functions were applied:
Gaussians, sigmoids with activation function th(·), etc.

5.1. Exact Data

Here we present results obtained by the neural network solution in the case of 10 neuro elements
and two types of functions for the accurate ”measurements” (9). The first type – sigmoid
functions

u(x, t, xc, tc, a, b, c, d) = c(th(a(x− xc) + b(t− tc)) + d),

where xc, tc, a, b, c, d are the parameters (weights) of the neural network. As the result, we
have the perceptron network with one hidden layer.

The basis functions of the second type are the solutions of the equation (2)

u(x, t, xc, tc, a, c) = c(
1√

t− tc
exp

−0.25(x − xc)
2

t− tc
+ a). (12)

The given error functional J (7) takes the form

J0 = λ0

M0
∑

j=1

U2(xj, 0) + λ1

M1
∑

j=1

U2(0, tj) + λ
m
∑

j=1

(U(x∗, t̃j)−G1(t̃j))
2. (13)

The counterplot of the neural network solution and the real concentration function is
presented in Figure 1 (the perceptron network) and Figure 2 (the special network) at the level
of the harmful substances concentration value 0.05. In this model, this level acts as an example
of critical exceeding of which is dangerous to humans.

Figure 1. The counterplot of the
neural network solution and the
model concentration function Ũ of
level 0.05. The perceptron network
with n = 10 neuro elements.

Figure 2. The counterplot of the neural network
solution and the model concentration function Ũ
of level 0.05. The neural network with n = 10
basis neuro elements. The basis functions used are
fundamental solutions (12) of a diffusion equation
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The plots represent the elevated concentration prevalence through the tunnel from the source
(x = 1) towards the entrance (x = 0) over time (0 ≤ t ≤ 1). As expected, the special features
provide a more accurate solution (mismatched area marked by dark color).

Note, that with an increase in the number of neurons up to 20 the universal perceptron
network provides a good approximation of a function Ũ(x, t) in an area near the exit of the
tunnel. But there is an accumulation of error at the far end of the tunnel.

In the case of the model concentration function Û (11), we have obtained a good neural
network solution using fundamental solutions (12) of a diffusion equation only.

5.2. Binary Data

Neural network solution of considered problem is constructed for the data generated by the
formula (10) at the parameters values ε = α = 0.03 and β = 2α. Note that in evaluating the
results it must be taken into account the character of the data and the selected error.

A good result was achieved by the neural network with n = 5 special basis functions (12).
Figure 3 illustrates the approximation of the concentration function Ũ(x, t) in the measuring
point (x∗ = 0.1).

Figure 3. The plot of the
neural network solution, the
concentration function Ũ at
x∗ = 0.1 and the point data.
The special network with n =
10 neuro elements.

The approximation of the concentration function Û(x, t) (11) has a similar appearance.

6. Conclusions

The approximate neural network solutions of the considered problems are constructed.
Computing experiment showed only a slight discrepancy between the boundaries of areas in
excess of the maximum permissible concentration of harmful substances, obtained by the neural
network solution in the case of 10 neuro elements and modeling solution.

As basic elements of the neural network, different types and number of functions were applied,
but it is preferable to use the functions that in advance satisfy the diffusion equation, then
the first term can be eliminated from the error functional. This approach is less versatile
but allows us to get a more accurate solution with a smaller number of basic functions. The
insignificant modification of methods described [2, 4] allows considering the case of interval
specified parameters.

The statement of problems discussed in our work includes the differential equations. This
fact causes the lack of overfitting. Usually, overfitting occurs when it is training a neural network
on the finite set of input data in a situation when the capacity of this set does not exceed the
number of weights. As a rule, the problem is solved by the division of a data set for training
and test sets and the selection of the network structure to minimize the error on the test set.
Differential equations are valid on some infinite set of points (in some domain). Therefore, the
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set of points from which training and test sets are selected is infinite. It makes possible the
regeneration of the training and test sets and dimensional changes to eliminate overfitting.

In our problem, the number of times at which the measurements are made, finite and the
points, from which we can select a test set, form a square [0; 1] × [0; 1], that is, an infinite set.

We are going to consider the possibility of creation forecast of harmful substances spread in
a tunnel from any source and definition of zones with dangerous concentrations for protection
of the workers who are in a tunnel from the influence of these pollutants.
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