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Abstract. We present results of numerical simulation of the drag force acting on a 
spherical micro-particle in a two-wall channel formed by parallel plates. Dependence 
of the drag force on the distance between the particle and the channel wall is studied 
for different channel heights. We show the drag force in a two-wall channel with the 
height of the order of the particle diameter to be significantly higher than that in the 
single-wall counterpart. 

1.  Introduction 
 
At present investigations of non-contact manipulation of micrometer-sized objects attract a 
considerable attention of researchers. The method is based on the optical trapping of the micrometer-
sized particles as suggested in the 1970s [1]. The initial idea led to the development of a single-beam 
gradient force optical traps or “optical tweezers” capable of manipulation with the particles sized 1s-
10s micrometers. Nowadays optical tweezers are widely used in many areas of physics and biology  
[2-5]. One of the emerging and fast-developing applications of the optical tweezers is lab-on-a-chip 
devices for manipulation and analysis of biological specimens. In such a prospective devices, 
micrometer-sized particles may be trapped and manipulated by the beams of semiconductor lasers 
which are the most compact and effective light emitters. However, application of the laser diodes to 
the optical trapping is hindered by the low spatial quality of their beams [6] resulting in the high beam 
propagation parameter M2. The impact of the high M2 values on the optical trap must be taken into 
account even for super-focused [7], non-diverging [8-10], and self-focused [11] laser diode beams and 
results in considerable reduction of the trapping force. On the other hand, if a particle is located in a 
wall-bounded flow, the particle drag coefficient can change in a wide range and the drag force can 
exceed the trapping force that leads to loss of trapping and escape of the particle from the laser beam. 
Therefore, it is highly important to have a proper understanding of the drag force acting on a 
micrometer-sized particle being moved near a wall of a channel. 

The spherical solid particle motion in an unbounded flow and near a wall in a single-wall channel 
configuration has been extensively studied. These problems were considered in many publications, 
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both experimental and theoretical, where the hydrodynamic forces acting on a spherical particle were 
investigated [12-14] and where several sphere drag coefficient approximations were suggested [15].  

However, there are few investigations of the channel configuration with two walls in the form of 
parallel plates, and only a small part of them are experimental. For example, the experimental data on 
the drag force given in [16] allow one to compare the numerical simulation and experimental results 
only for the centre line between two parallel plates. There are no data for other areas of the channel. 

2.  Numerical model 
 
Figure 1 shows schematically a sphere in a channel and characteristics of the computational zone. The 
sphere with diameter D moves with velocity Vs parallel to the channel wall. The channel height is H 
and the distance between the channel wall and the sphere surface is d.    

The flow near the sphere moving with velocity Vs in a quiescent fluid can be described in the 
dimensionless form as 

 
ߘ ⋅ ܷ = 0

డ௎
డ௧
+ (ܷ ⋅ ܷ(ߘ = ݌ߘ− + ଵ

Re
 ଶܷ            (1)ߘ

 
where U is the dimensionless flow velocity, p is the dimensionless pressure, and the Reynolds number 
(the ratio of the inertial to viscous forces) is Re = ௦ܸ ܦ ⁄ߥ . The coordinates, velocity, time, and 
pressure in the governing equations are normalized by using the characteristic values D, Vs, D/Vs, 
ρVs

2, respectively, where ρ is the fluid density, and ν is the fluid kinematic viscosity. When the sphere 
moves in a fluid, the drag force FD acting on the sphere arises. This force is due to the pressure and 
viscous effects. The drag coefficient CD can be expressed as the ratio between the drag force, unit 
kinetic energy, and sphere cross-section area ܥ஽ =

ଶிವ
ఘ௏ೞమ(ଵ ସ⁄ గ஽మ)

 . 
To carry out numerical simulation, a reference frame was attached to the sphere. In this case the 

boundary conditions on the channel walls and inlet (the right-hand side of the computational domain) 
are given by u = -U and v = w = 0, the boundary conditions on the outlet (left-hand side of the 
computational domain) are డ௎

డ௫
= 0, and the boundary conditions on the sphere surface are u = v = w = 

0. In this paper a motion of micro-particles in a small-size channel is considered, so the typical 
Reynolds number is 10-3.   

A modified incompressible solver based on the OpenFOAM package [17] in a full 3D zone with a 
spherical particle was used for the numerical simulation. In the package, a finite-volume method was 
employed. For simulation, second-order spatial schemes with a minimal dissipation were chosen. 

A grid and domain size independence study was performed by using an unbounded flow and 
single-wall channel flow as a benchmark for validation. The mesh convergence study was carried out 
by the 2x mesh refinement till the difference in the drag coefficient between the calculated and 
analytical values became as low as 1%. 

There is a simple relation between the drag coefficient and Reynolds number for an unbounded 
flow, i.e., the flow without any walls [18] 

 
஽௙௥௘௘ܥ =

ଶସ
Re
(1 + 0.15Re଴.଺଼଻)             (2) 

 
In the text below, CDfree will be used as a characteristic value for the drag coefficient normalization. 
Table 1 shows results of the grid and domain size independence study for a unbounded flow 

configuration. The mesh size is denoted by MxN, where M is the number of cells in the radial 
direction and N is the number of cells around the central cross-section of the sphere, the domain size 
Dd is normalized by using D as a characteristic value. Figure 2 shows an example of the mesh and 
computational region in case of unbounded flow. All simulations were made for Re=10-3. 
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Figure 1.  Schematic of sphere motion in the channel (a) and characteristics of the computational 
domain and mesh near the sphere (b). 

 
Table 1. Drag coefficients for different computational domain and mesh sizes. 

No. Mesh size 
RxS 

Domain 
size, Dd/D 

CD_ns 
numerical 
simulation 

CDfree  
calculated from (2) 

Δ = (CD_ns-CDfree)/ 
CD_ns*100 

% 

1 10x20 10 24649 24031 2.5 
2 20x40 10 25283 24031 5.0 

3 10x20 20 24700 24031 2.7 

4 20x20 20 24350 24031 1.3 
5 20x40 20 24190 24031 0.7 

 
Thus, the domain size equal to 20 sphere diameters and the mesh size equal to 20x40 was chosen 

for the numerical simulation.   
Changes in the drag coefficient in a single-wall channel configuration have been considered by 

many authors. For the case when a sphere nearly touches the channel wall, i.e. d → 0, a lubrication 
theory [19] gives an approximation for the drag coefficient as: 

 
஽ܥ =

ଶସ
Re
൬0.9588 − ଼

ଵହ
݈݊ ቀ2 ௗ

஽
ቁ൰                               (3) 

 
So it is evident that there is logarithmic singularity when the sphere approaches the channel wall. 
The approximation valid for any values of d was suggested in [15]: 
 
 

஽ܥ = ஽଴൫1ܥ + Reఉ൯ߙ
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                    (4) 
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As the authors of [15] stated, the above expression reduces to correct limits for small and large d. 
Figure 3 shows a normalized drag coefficient (the characteristic value for the normalization is the drag 
coefficient for an unbounded flow) obtained in the numerical simulation for different dimensionless 
distances (d/D) from the sphere. Approximations (3) and (4) are also plotted in this figure.  
 

 

Figure 3.  Variation in normalized drag coefficient for different normalized distances from the wall. 
 
It is clearly seen that approximation (3) gives wrong results for large d/D values, but it is in a very 
good agreement for d → 0 as expected. Approximation (4) shows reasonable values in the entire 
region of simulation. The data obtained in the numerical simulation are in very good agreement with 
approximation (4), which confirms the correctness of the choice of the computational zone and mesh 
sizes. 

3.  Results and discussion 
 
The main goal of our study was to perform numerical simulation for a solid sphere in a two-wall 
channel configuration, i.e. between parallel plates. In the course of numerical simulation the channel 
height was varied from 1.1 to 10 sphere diameters.  To compare the results obtained in our numerical 
simulation with the experiment, we used the experimental data for the centre line of the two-wall 
channel [16]. In [16], the experimental data were approximated by a 14th degree polynomial. So it is 
possible to calculate the drag coefficient at the centre line for channels of different heights.   

Figure 4 shows the data for the normalized drag coefficient for the channels with the heights equal 
to 1.1, 2, 5, and 10 sphere diameters. In these figures approximation (4) that presents the drag 
coefficient for a single-wall configuration is also plotted.   

It is clearly seen that the computed results are higher than those approximated for the channel with 
H/D <5 in the entire range of distances between the wall and sphere surface. The computed results for 
the channel with H/D=10 are in good agreement with the single-wall approximation. The simulation 
results for the channel with H/D=5 are slightly higher than those approximated for the single-wall 
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case. There is also an excellent agreement between the results of our numerical simulation and 
approximation of the experimental data reported in [16] for the center line of the channel. 

 

 

Figure 4.  Normalized drag coefficient vs normalized distance between the sphere and wall for 
different channel heights. 

 
Our results clearly show that the sphere drag coefficient in the two-wall channel configuration can 

be significantly higher than in an unbounded flow. In the case of two-wall channels with the heights 
equal to several sphere diameters the drag coefficient is significantly higher than that in a single-wall 
channel for the same distances between the sphere and the wall. This effect diminishes with increasing 
channel height.      

4.  Conclusions 
 
In this paper a numerical simulation of the drag coefficient for the sphere in the two-wall channel is 
performed. The flow conditions correspond to the micro-particle motion with the Reynolds number of 
10-3. The validation of the model is carried out in the conditions of an unbounded flow and a single-
wall channel. The simulation data of the validation cases were found to be in good agreement with the 
experiments and approximations given in the literature. The numerical simulation of the drag 
coefficient of a sphere in a two-wall channel shows a strong dependence of the sphere drag coefficient 
on the distance between the sphere and the wall. In the case of a channel with the height of the order of 
the particle diameter the drag coefficient is much higher than that in an unbounded flow and higher 
than in a single-wall channel with the same distance between the sphere and the wall. 
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