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Abstract. We generalize our previous work on diffusion of ions in isothermal plasmas to
handle non-isothermal systems. This approach, combined with the method of effective potentials
for computing diffusion coefficients, allows us to formulate the diffusion problem in Coulomb
systems of arbitrary coupling. The results are applied to study heat-blanketing envelopes of
neutron stars in diffusive equilibrium.

1. Introduction
Diffusion in ion mixtures is an important problem of stellar physics. Here we focus on the
diffusion problem in dense stellar plasmas where the ions can be moderately or strongly coupled
by Coulomb forces. Such plasmas are characteristic for compact stars, i.e. for neutron stars and
white dwarfs.

Consider a strongly coupled and non-magnetized multicomponent plasma consisting of several
ion species (𝛼 = 𝑗, 𝑗 = 1, 2, . . .) and neutralizing electron background (𝛼 = 𝑒). Let 𝐴𝑗 and 𝑍𝑗

be the mass and charge numbers of ion species 𝑗, and 𝑛𝛼 be the number density of particles 𝛼,
with 𝑛𝑒 =

∑︀
𝑗 𝑍𝑗𝑛𝑗 due to electric neutrality.

Coulomb coupling parameter of ions is proportional to a dimensionless parameter Γ0 =

𝑒2/(𝑎𝑘B𝑇 ) (see, e.g., [1–4], for more details). Here 𝑒 > 0 is an elementary charge, 𝑎 = (4𝜋𝑛/3)−
1/3

is the average ion sphere radius, 𝑛 =
∑︀

𝑗 𝑛𝑗 is the total number density of the ions, 𝑘B is the
Boltzmann constant and 𝑇 is the temperature. It is convenient to introduce the average Coulomb

coupling parameter defined as Γ = Γ0𝑍
5/3 𝑍

1/3
, where the average 𝑓 of any quantity 𝑓 is given

by 𝑓 = 𝑛−1
∑︀

𝑗 𝑛𝑗𝑓𝑗 . If Γ ≫ 1 the ions are strongly coupled (i.e. highly non-ideal), whereas at

Γ ≪ 1 they are weakly coupled; Γ ∼ 1 refers to the intermediate coupling.

2. General expressions for the diffusive flux
The general approach for deriving the diffusive flux is the same as for an isothermal plasma
[5, 6]. Now we need to include properly a temperature gradient. To this aim, we introduce an
additional term to the generalized thermodynamic force acting on particles 𝛼,

̃︁𝐹𝛼 = 𝐹𝛼 −
(︂
∇𝜇𝛼 − 𝜕𝜇𝛼

𝜕𝑇

⃒⃒⃒⃒
𝑃

∇𝑇

)︂
. (1)

Here 𝐹𝛼 is a total force, acting on particles 𝛼, and 𝜇𝛼 is a chemical potential. In particular, we
consider 𝐹𝛼 = 𝑒𝛼𝐸 + 𝑚𝛼𝑔, where 𝑒𝛼 and 𝑚𝛼 are charge and mass of particles 𝛼, respectively;
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𝐸 is an electric field due to plasma polarization in an external gravitational field (to maintain
plasma electric neutrality) and 𝑔 is a gravitational acceleration. Note that 𝜕𝜇𝛼/𝜕𝑇 has to be
calculated at constant pressure 𝑃 .

The quantities 𝑑𝛼, which characterize deviations from diffusive equilibrium, are introduced
in the same way as in [5, 6],

𝑑𝛼 =
𝜌𝛼
𝜌

∑︁
𝛽

𝑛𝛽
̃︁𝐹𝛽 − 𝑛𝛼

̃︁𝐹𝛼. (2)

They have the same properties
∑︀

𝛼 𝑑𝛼 = 0 (𝜌𝛼 = 𝑚𝛼𝑛𝛼 being a mass density of particles 𝛼 and
𝜌 a total mass density). Using the Gibbs-Duhem relation

∑︀
𝛼 𝑛𝛼∇𝜇𝛼 = ∇𝑃 − 𝑆∇𝑇 (𝑆 being

the entropy density) we obtain ∑︁
𝛼

𝑛𝛼
̃︁𝐹𝛼 = 𝜌𝑔 −∇𝑃. (3)

We are mainly interested in the outer heat-blanketing envelopes of neutron stars which are in

hydrostatic equilibrium as a whole. Then
∑︀

𝛼 𝑛𝛼
̃︁𝐹𝛼 = 𝜌𝑔 −∇𝑃 = 0 and we can rewrite (2) in

the form

𝑑𝛼 = −𝜌𝛼
𝜌
∇𝑃 − 𝑍𝛼𝑛𝛼𝑒𝐸 + 𝑛𝛼

(︂
∇𝜇𝛼 − 𝜕𝜇𝛼

𝜕𝑇

⃒⃒⃒⃒
𝑃

∇𝑇

)︂
, (4)

with 𝑍𝑒 = −1 for the electrons. The electric field can be calculated assuming the electron quasi-
equilibrium (with respect to ion motion) which occurs mostly because the electrons are much

lighter than the ions (e.g. [5]). Then 𝑑𝑒 = 0 and 𝑚𝑒 → 0, leading to ̃︁𝐹𝑒 = 0, and to

𝑒𝐸 = −
(︂
∇𝜇𝑒 −

𝜕𝜇𝑒

𝜕𝑇

⃒⃒⃒⃒
𝑃

∇𝑇

)︂
. (5)

This expression can be written in alternate forms using standard thermodynamic relations.
Chemical potentials are usually known as functions of temperature and number densities, but

not the pressure. It is useful to rewrite 𝜕𝜇𝛼/𝜕𝑇 at constant 𝑃 in terms of 𝜕𝜇𝛼/𝜕𝑇 at constant
𝑛𝛼. In the following relation, written for a binary ionic mixture (BIM), the pressure is assumed
to be known as a function of 𝑇 and 𝑛𝛼 (in other words, the equation of state – EOS – of the
system is known),

𝜕𝜇

𝜕𝑇

⃒⃒⃒⃒
𝑃

=
𝜕𝜇

𝜕𝑇

⃒⃒⃒⃒
𝑛1,𝑛2

− 𝜕𝑃

𝜕𝑇

(︂
𝑛1

𝑛2

𝜕𝜇

𝜕𝑛1
+

𝜕𝜇

𝜕𝑛2

)︂(︂
𝑛1

𝑛2

𝜕𝑃

𝜕𝑛1
+

𝜕𝑃

𝜕𝑛2

)︂−1

. (6)

The general expression for the diffusive flux reads (also see [5])

𝐽𝛼 = Φ
∑︁
𝛽 ̸=𝛼

𝑚𝛼𝑚𝛽𝐷𝛼𝛽𝑑𝛽 + 𝐷𝛼,𝑇
∇𝑇

𝑇
. (7)

Here Φ is a normalization function, Φ = 𝑛/(𝜌𝑘𝐵𝑇 ) for a BIM; 𝐷𝛼𝛽 is a diffusion coefficient
for particles 𝛼 with respect to particles 𝛽; 𝐷𝛼,𝑇 is a thermal diffusion coefficient of particles
𝛼. Writing the diffusive flux in such a form guaranties that the diffusion and thermal diffusion
coefficients introduced here coincide with their standard definitions in physical kinetics of weakly
coupled plasma [7, 8]. For the diffusive currents one always have

∑︀
𝛼 𝐽𝛼 = 0.
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3. Examples
As an example let us study diffusive equilibrium configurations of BIMs in heat-blanketing
envelopes of neutron stars. Although the thermal diffusion term can affect an equilibrium
configuration, it is usually small compared to ordinary diffusion. This allows us to neglect
thermal diffusion. In addition, electrons weakly affect the ion transport [9] so that the ion
subsystem can be studied (quasi-)independently. This simplifies the diffusive flux,

𝐽2 = −𝐽1 =
𝑛𝑚1𝑚2

𝜌𝑘B𝑇
𝐷12𝑑1, (8)

where 𝐷12 is the interdiffusion coefficient. According to (8) the diffusion equilibrium 𝐽2 = 0
is equivalent to the condition 𝑑1 = 0. The latter equation can then be used to calculate
the equilibrium configuration. In fact, it represents the chemical equilibrium approach of [10]
modified for non-isothermal systems. Note that in our particular case we do not need an explicit
expression for 𝐷12. However, generally, one needs both the diffusion and thermal diffusion
coefficients to find the equilibrium configuration.

Let us stress the importance of the last (temperature) term in (1). For strongly coupled
ions and degenerate electrons (described in [5]) all temperature derivatives exactly cancel
out and the resulting expressions for the diffusive currents are the same as in [5], with the
equilibrium configuration equivalent to chemical equilibrium [10]. However, for high enough
surface temperatures and light elements like hydrogen, helium or carbon in the heat-blanketing
envelope (especially in the outermost parts of the envelope, at 𝜌 . 107 g cm−3) the ions can be
coupled not strongly but moderately, and the temperature term becomes important.
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Figure 1: Comparison of isothermal (dashed
curve) and non-isothermal (solid curve) ap-
proaches to diffusive equilibrium in a BIM in
the heat-blanketing envelope of a neutron star.
𝑋He is the number fraction of He in He – C
mixture shown versus the total mass density.
The neutron star has the mass 𝑀 = 1.4 M⊙,
radius 𝑅 = 10 km and the surface tempera-
ture 𝑇𝑠 = 0.755 MK.
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Figure 2: Internal temperature of a neutron
star 𝑇𝑏7 = 𝑇𝑏/107K in an H – He mixture as
a function of 𝜌*H. One can see the transition
from pure He (small amount of H, low 𝜌*H) to
pure H (a lot of H, large 𝜌*H). Neutron star
parameters are the same as in Fig. 1; 𝜌*H is
an effective density of the transition from H
to He. Solid and dashed curves correspond
to different densities 𝜌𝑏 at the bottom of the
envelope.

Fig. 1 compares the fraction of helium in a helium – carbon mixture computed using the
isothermal approach [5, 10] (the dashed curve) and the non-isothermal approach of this paper
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(the solid curve). The difference is quite visible. The helium fraction can be important in
the heat-blanketing envelopes, in particular, for diffusive nuclear burning. Note that other
quantities can be significantly less affected by the temperature term in (1). For example, the
relation between internal and surface temperatures of the star, the pressure and total density
profiles differ only slightly when computed via the isothermal and non-isothermal approaches.

Fig. 2 shows a transition from a pure hydrogen to a pure helium envelope as well as a
weak dependence of internal stellar temperature on the density 𝜌𝑏 at the bottom of the heat-
blanketing envelope. The effective density 𝜌*H of the transition is determined by the total amount
of hydrogen in the envelope. It is introduced by artificial replacement of a smooth transition by
a step-like one. More details will be published elsewhere.

4. Conclusions
We have derived general expressions for the diffusive flux in multicomponent non-isothermal
Coulomb systems with arbitrary Coulomb coupling. In the limit of weakly coupled plasma
these expressions turn into the classical expressions for diffusion in ideal gas mixtures. Our
new expressions are valid not only for Coulomb systems, but for any gaseous or liquid system,
provided that one knows chemical potentials of its constituents and corresponding diffusion
coefficients (although diffusion is generally available in solids, it is greatly suppressed there
compared to gases and liquids).

The expressions for the diffusive flux combined with the diffusion coefficients (see, e.g., [4])
allow one to calculate not only diffusive equilibrium configurations of heat-blanketing envelopes
of neutron stars, but also the equilibration of these configurations with time provided that the
initial configurations are out of equilibrium.
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