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Abstract. To seek the exact solutions of nonlinear partial differential equations (NPDEs),
the improved (G′/G)−expansion method is proposed in the present work. With the aid of
symbolic computation, this effective method is applied to construct exact solutions of the
(1+1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony equation and (3+1)-
dimensional Kudryashov-Sinelshchikov equation. As a result, new types of exact solutions are
obtained.

1. Introduction
Many important complex phenomena and dynamic processes in physics, mechanics, biology and
chemistry can be described by NPDEs. Therefore, the investigation of the exact solutions for
NPDEs have become more and more attractive in the study of soliton theory. Recently, a lot
of direct methods have been proposed to construct exact solutions of these equations partly
by virtue of the applicability of symbolic computation packages like Mathematica and Maple,
which enables us to carry out the exact computation on computer [1-11].

The original (G′/G)−expansion method is a widely used method in soliton theory and
mathematical physics. The keynote of this method is that the travelling wave solutions of
NPDEs can be represented in terms of (G′/G) in which G = G(ξ) satisfies the second order
ordinary differential equation G′′(ξ) + λG′(ξ) + µG(ξ) = 0, where λ and µ are constants [5].
Comparably, in the improved (G′/G)−expansion method the travelling wave solutions of NPDEs
can be represented in terms of (G′/G) in which G = G(ξ) satisfies the second order ordinary
differential equation GG′′ = DG2+EGG′+F (G′)2, where D, E and F are real parameters [13].

1.1. Algorithm of the improved (G′/G)−expansion method
We consider a general partial differential equation, say in the independent variables x and t is
given by

P (u, ux, ut, uxx, uxt, utt, ...) = 0, (1)

where u is an unknown function, P is a polynomial in u and their various partial derivatives.
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To find the exact solution of Eq.(1) , we introduce the following travelling wave
transformation:

u(x, t) = u(ξ), ξ = x− ct. (2)

Here c denotes the wave velocity.
Employing Eq.(2), we can rewrite Eq.(1) in a nonlinear ordinary differential equation (ODE)

as follows
Q(u, u′, u′′, u′′′, ...) = 0. (3)

Here the prime denotes the derivation with respect to ξ. Eq.(3) is then integrated as many times
as possible and setting the integration cosntant to zero. In the improved (G′/G)−expansion
method, the solution u(ξ) is considered in the finite series form

u(ξ) =
n∑

i=0

ai

(
G′

G

)i

. (4)

Here the positive integer n denotes the balancing number, which is determined by considering
the homogeneous balance principle. Namely, it can be calculated by balancing the highest order
derivative term and nonlinear term appears in Eq.(3). Here G(ξ) satisfies the second order
auxiliary ODE in the form:

GG′′ = DG2 + EGG′ + F (G′)2, (5)

where D, E and F are real parameters. Also note that Eq.(5) reduces into following Riccati
equation as:

d

dξ

(
G′

G

)
= D + E

(
G′

G

)
+ (F − 1)

(
G′

G

)2

. (6)

From the general solutions of the Eq.(6) , we have the following different cases:
Case 1: If E ̸= 0 and ∆ = E2 + 4D − 4DF < 0

G′ (ξ)

G (ξ)
=

E

2 (1− F )
+

E
√
−∆

2 (1− F )

 ic1 cos
(√

−∆
2 ξ

)
− c2 sin

(√
−∆
2 ξ

)
ic1 sin

(√
−∆
2 ξ

)
+ c2 cos

(√
−∆
2 ξ

)
 (7)

Case 2: If E ̸= 0 and ∆ = E2 + 4D − 4DF ≥ 0

G′ (ξ)

G (ξ)
=

E

2 (1− F )
+

E
√
∆

2 (1− F )

c1 exp
(√

∆
2 ξ

)
+ c2 exp

(
−
√
∆

2 ξ
)

c1 exp
(√

∆
2 ξ

)
− c2 exp

(
−
√
∆

2 ξ
)
 (8)

Case 3: If E = 0 and ∆ = D (1− F ) < 0

G′ (ξ)

G (ξ)
=

√
−∆

(1− F )

 ic1 cosh
(√

−∆ξ
)
− c2 sinh

(√
−∆ξ

)
−c1 sinh

(√
−∆ξ

)
− c2 cosh

(√
−∆ξ

)
 (9)

Case4: If E = 0 and ∆ = D (1− F ) ≥ 0

G′ (ξ)

G (ξ)
=

√
∆

(1− F )

c1 cos
(√

∆ξ
)
+ c2 sin

(√
∆ξ

)
c1 sin

(√
∆ξ

)
− c2 cos

(√
∆ξ

)
 (10)
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where ξ = x− ct and D,E, F, c1 and c2 are arbitrary constants.

We substitute Eq.(4) into Eq.(3) along with Eq.(6) and collect the coefficients of
(
G′(ξ)
G(ξ)

)i
, (i =

0, 1, ...) then set each coefficient to zero to derive a set of algebraic equations for ai, (i =
0, 1, ..., n), D, E, F and c. We solve these set of algebraic equations with the aid of Maple
packet program and substitute into Eq.(4) along with the general solutions of the Eq.(6) [13].

2. Implemantation of the improved (G′/G)−expansion method
In the current section, we apply our algoritm to the (1+1)-dimensional nonlinear dispersive
modified Benjamin-Bona-Mahony equation and (3+1)-dimensional Kudryashov-Sinelshchikov
equation.

2.1. (1+1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony equation
The (1+1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony equation was first
derived to model an approximation for surface long waves in nonlinear dispersive media. This
equation can also qualify the acoustic waves in inharmonic crystals, hydromagnetic waves in
cold plasma and acoustic gravity waves in compressible fluids. It is given in the following form
[12]:

ut + ux − αu2ux + uxxx = 0, (11)

where u = u(ξ). Employing the travelling wave transformation (2), Eq.(11) reduced to an ODE
and integrating the equation, we get

(1− c)u− αu3

3
+ u

′′
= 0. (12)

By balancing the highest order derivative terms and nonlinear terms in Eq.(12) , we get the
balancing number m = 1. According to the improved (G′/G)−expansion method, the exact
solution takes the form:

u(ξ) = a0 + a1
G′(ξ)

G(ξ)
. (13)

Then we substitute Eq.(13) into the Eq.(12) and collect the coefficients of
(
G′(ξ)
G(ξ)

)i
, (i = 0, 1, 2, 3)

then set each coefficient to zero to derive a set of algebraic equations. By solving this system
with the aid of symbolic computation, we get the following results

a0 = ±E
2

√
6
α , a1 = ±

√
6
α (F − 1) , c = 2DF − E2

2 + 1− 2D, D = D, E = E, F = F.

(14)
If we substitute these results into Eq.(13), we find the following cases for the exact solutions of
(1+1) dimensional nonlinear dispersive modified Benjamin-Bona-Mahony equation.

Case 1: When E ̸= 0 and ∆ = E2 + 4D − 4DF < 0,

u1 (ξ) = ±E

2

√
6

α
±

√
6

α
(F − 1)

 E

2 (1− F )
+

E
√
−∆

2 (1− F )

 ic1 cos
(√

−∆
2 ξ

)
− c2 sin

(√
−∆
2 ξ

)
ic1 sin

(√
−∆
2 ξ

)
+ c2 cos

(√
−∆
2 ξ

)

(15)

Case 2: When E ̸= 0 and ∆ = E2 + 4D − 4DF ≥ 0,

u2 (ξ) = ±E

2

√
6

α
±

√
6

α
(C − 1)

 E

2 (1− F )
+

E
√
∆

2 (1− F )

c1 exp
(√

∆
2 ξ

)
+ c2 exp

(
−
√
∆

2 ξ
)

c1 exp
(√

∆
2 ξ

)
− c2 exp

(
−
√
∆

2 ξ
)

(16)
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Case 3: When E = 0 and ∆ = D (1− F ) < 0,

u3 (ξ) = ±
√

6

α
(F − 1)

 √
−∆

(1− F )

 ic1 cosh
(√

−∆ξ
)
− c2 sinh

(√
−∆ξ

)
−c1 sinh

(√
−∆ξ

)
− c2 cosh

(√
−∆ξ

)
 (17)

Case 4: When E = 0 and ∆ = D (1− F ) ≥ 0,

u4 (ξ) = ±
√

6

α
(F − 1)

 √
∆

(1− F )

c1 cos
(√

∆ξ
)
+ c2 sin

(√
∆ξ

)
c1 sin

(√
∆ξ

)
− c2 cos

(√
∆ξ

)
 (18)

Note that our solutions are different from the given ones in [12].

2.2. (3+1)-dimensional Kudryashov-Sinelshchikov equation
We handle with the (3+1)-dimensional Kudryashov-Sinelshchikov equation, which has been
examined to model the physical characteristics of nonlinear waves in a bubbly liquid. It is given
in the form

(ut + uux + uxxx − γuxx)x +
1

2
(uyy + uzz) = 0, (19)

where u = u(x, y, z, t) represents the density of the bubbly liquid, the scalar quantity γ depends
on the kinematic viscosity of the bubbly liquid and the independent variables x, y and z are the
scaled space coordinates, t is the scaled time coordinate [14].

By using the travelling wave transformation

ξ = x+ y + z − ct, u(x, y, z, t) = u(ξ), (20)

Eq.(19) can be reduced to a nonlinear ODE and integrating the equation twice with respect to
ξ, and taking the integration constants as zero, we get

(1− c)u+
u2

2
+ u′′ − γu′ = 0. (21)

Balancing the highest order derivative term with the nonlinear term appearing in Eq.(21) , we
find the balancing number as n = 2. By means of the improved (G′/G)−expansion method, the
solutions takes the form as follows

u(ξ) = a0 + a1
G′(ξ)

G(ξ)
+ a2

(
G′(ξ)

G(ξ)

)2

. (22)

Then we substitute Eq.(22) into the Eq.(21) and collect the coefficients of
(
G′(ξ)
G(ξ)

)i
, (i =

0, 1, 2, 3, 4), then set each coefficient to zero to derive a set of algebraic equations. If we solve
the set of algebraic equations above, we get different cases for the solutions of D, E, F, a0, a1,
a2 and c.

(I)

D = D,E = E, c = 6
25γ

2 + 1, F = −γ2+100D+25E2

100D ,

a0 = −3E2 + 6
5γE + 9

25γ
2, a1 = −3(γ3−25E2γ−5γ2E+125E3)

125D , a2 = −3(γ4−50γ2E2+625E4)
2500D2 .

(23)
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Substituting these results into Eq.(22) we get the following cases for the exact solutions of
(3+1)-dimensional Kudryashov-Sinelshchikov equation.

Case 1: When E ̸= 0 and ∆ = E2 + 4D − 4DF < 0,

u1 (ξ) = −3E2 + 6
5γE + 9

25γ
2

−3(γ3−25E2γ−5γ2E+125E3)
125D

 E
2(1−F ) +

E
√
−∆

2(1−F )

 ic1 cos

(√
−∆
2

ξ

)
−c2 sin

(√
−∆
2

ξ

)
ic1 sin

(√
−∆
2

ξ

)
+c2 cos

(√
−∆
2

ξ

)
−3(γ4−50γ2E2+625E4)

2500D2

 E
2(1−F ) +

E
√
−∆

2(1−F )

 ic1 cos

(√
−∆
2

ξ

)
−c2 sin

(√
−∆
2

ξ

)
ic1 sin

(√
−∆
2

ξ

)
+c2 cos

(√
−∆
2

ξ

)2
(24)

Case 2: When E ̸= 0 and ∆ = E2 + 4D − 4DF ≥ 0,

u2 (ξ) = −3E2 + 6
5γE + 9

25γ
2

−3(γ3−25E2γ−5γ2E+125E3)
125D

 E
2(1−F ) +

E
√
∆

2(1−F )

 c1 exp

(√
∆
2

ξ

)
+c2 exp

(
−
√
∆

2
ξ

)
c1 exp

(√
∆
2

ξ

)
−c2 exp

(
−
√
∆

2
ξ

)
−3(γ4−50γ2E2+625E4)

2500D2

 E
2(1−F ) +

E
√
∆

2(1−F )

 c1 exp

(√
∆
2

ξ

)
+c2 exp

(
−
√

∆
2

ξ

)
c1 exp

(√
∆
2

ξ

)
−c2 exp

(
−
√

∆
2

ξ

)2
(25)

Case 3: When E = 0 and ∆ = D (1− F ) < 0,

u3 (ξ) =
9
25γ

2 − 3γ3

125D

( √
−∆

(1−F )

(
ic1 cosh(

√
−∆ξ)−c2 sinh(

√
−∆ξ)

−c1 sinh(
√
−∆ξ)−c2 cosh(

√
−∆ξ)

))

− 3γ4

2500D2

( √
−∆

(1−F )

(
ic1 cosh(

√
−∆ξ)−c2 sinh(

√
−∆ξ)

−c1 sinh(
√
−∆ξ)−c2 cosh(

√
−∆ξ)

))2
(26)

Case 4: When E = 0 and ∆ = D (1− F ) ≥ 0,

u4 (ξ) =
9

25
γ2 − 3γ4

2500D2

 √
∆

(1− F )

c1 cos
(√

∆ξ
)
+ c2 sin

(√
∆ξ

)
c1 sin

(√
∆ξ

)
− c2 cos

(√
∆ξ

)
2

(27)

(II)

D = D,E = E, c = − 6
25γ

2 + 1, F = −γ2+100D+25E2

100D ,

a0 = −3E2 + 6
5γE − 3

25γ
2, a1 = −3(γ3−25E2γ−5γ2E+125E3)

125D , a2 = −3(γ4−50γ2E2+625E4)
2500D2 .

(28)
Substituting these results into Eq.(22) we get the following cases for the exact solutions of
(3+1)-dimensional Kudryashov-Sinelshchikov equation.

Case 1: When E ̸= 0 and ∆ = E2 + 4D − 4DF < 0,

u5 (ξ) = −3E2 + 6
5γE − 3

25γ
2

−3(γ3−25E2γ−5γ2E+125E3)
125D

 E
2(1−F ) +

E
√
−∆

2(1−F )

 ic1 cos

(√
−∆
2

ξ

)
−c2 sin

(√
−∆
2

ξ

)
ic1 sin

(√
−∆
2

ξ

)
+c2 cos

(√
−∆
2

ξ

)
−3(γ4−50γ2E2+625E4)

2500D2

 E
2(1−F ) +

E
√
−∆

2(1−F )

 ic1 cos

(√
−∆
2

ξ

)
−c2 sin

(√
−∆
2

ξ

)
ic1 sin

(√
−∆
2

ξ

)
+c2 cos

(√
−∆
2

ξ

)2
(29)
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Case 2: When E ̸= 0 and ∆ = E2 + 4D − 4DF ≥ 0,

u6 (ξ) = −3E2 + 6
5γE − 3

25γ
2

−3(γ3−25E2γ−5γ2E+125E3)
125D

 E
2(1−F ) +

E
√
∆

2(1−F )

 c1 exp

(√
∆
2

ξ

)
+c2 exp

(
−
√
∆

2
ξ

)
c1 exp

(√
∆
2

ξ

)
−c2 exp

(
−
√
∆

2
ξ

)
−3(γ4−50γ2E2+625E4)

2500D2

 E
2(1−F ) +

E
√
∆

2(1−F )

 c1 exp

(√
∆
2

ξ

)
+c2 exp

(
−
√

∆
2

ξ

)
c1 exp

(√
∆
2

ξ

)
−c2 exp

(
−
√

∆
2

ξ

)2
(30)

Case 3: When E = 0 and ∆ = D (1− F ) < 0,

u7 (ξ) = − 3
25γ

2 − 3γ3

125A

( √
−∆

(1−F )

(
ic1 cosh(

√
−∆ξ)−c2 sinh(

√
−∆ξ)

−c1 sinh(
√
−∆ξ)−c2 cosh(

√
−∆ξ)

))
− 3γ4

2500D2

( √
−∆

(1−F )

(
ic1 cosh(

√
−∆ξ)−c2 sinh(

√
−∆ξ)

−c1 sinh(
√
−∆ξ)−c2 cosh(

√
−∆ξ)

))2 (31)

Case 4: When E = 0 and ∆ = A (1− F ) ≥ 0,

u8 (ξ) = − 3
25γ

2 − 3γ3

125A

( √
∆

(1−F )

(
c1 cos(

√
∆ξ)+c2 sin(

√
∆ξ)

c1 sin(
√
∆ξ)−c2 cos(

√
∆ξ)

))
− 3γ4

2500D2

( √
∆

(1−F )

(
c1 cos(

√
∆ξ)+c2 sin(

√
∆ξ)

c1 sin(
√
∆ξ)−c2 cos(

√
∆ξ)

))2

(32)
Note that, our solutions are different from the given ones in [14].

3. Conclusion
In this paper, the improved (G′/G)−expansion method has been successfully applied to get
analytical solutions two nonlinear evolution equation. In the original (G′/G)−expansion
method, the auxiliary equation G′′(ξ) + λG′(ξ) + µG(ξ) = 0, has three different general
solutions. But in the improved (G′/G)−expansion method, the auxiliary differential equations
has GG′′ = DG2 + EGG′ + F (G′)2 four different general solutions. By this way, the
improved (G′/G)−expansion method can give more different solutions comparably the original
(G′/G)−expansion method and it is suggested to get new and more general type analytical
exact solutions. Accordingly, we use the improved (G′/G)−expansion method in this work.
The adopted method also is a direct and powerful technique in obtaining the exact solutions of
NPDEs. To our bestknowledge, the exact solutions obtained in this work will be significant to
reveal the pertinent features of the physical phenomena.
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