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Abstract. In this paper, the exponential B-spline Galerkin method is set up for getting the
numerical solution of the Burgers’ equation. Two numerical examples related to shock wave
propagation and travelling wave are studied to illustrate the accuracy and the efficiency of the
method. Obtained results are compared with some early studies.

1. Introduction
Burgers’ equation in which convection and diffusion play an important role arises in applications
such as meteorology, turbulent flows, modelling of the shallow water. Burgers’ equation is
considered to be useful model for many physical problems. Thus it is often studied for testing of
both real life problems and computational techniques. Not only does exact solutions of nonlinear
convective problem develops discontinuities in finite time, and might display complex structure
near discontinuities. Efficient and accurate methods are in need to be tackled the complex
solutions of the Burgers’ equation. Though analytical solutions of the Burgers’ equation exist
for simple initial condition, the numerical techniques are of interest to meet requirement of the
wide range of solutions of the Burgers’ equation. Some variants of the spline methods have
set up to find the numerical solutions of the Burgers’ equation such as Galerkin finite element
method [3, 8, 12], least square method [2], collocation method [4–7, 11], method based on the
cubic B-spline quasi interpolant [9, 10], etc.

Finite element methods are mainly used methods to have good functional approximate
solutions of the differential equations. The accuracy of the finite element solutions are increased
by the selection of suitable basis function for the approximate function over the finite intervals.
The exponential B-splines are suggested to interpolate data and function exhibiting sharp
variations [1], since polynomial B-splines based interpolation cause unwanted osculation for
interpolation. Some solutions of the Burgers’ equation show sharpness. Thus we will construct
the finite element method together with the exponential B-splines to have solutions of the
Burgers’ equation. A few exponential B-spline numerical methods have suggested for some
partial differential equations such as [13,14].

In this study, we will consider the Burgers’ equation

ut + uux − νuxx = 0 (1)
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where subscripts x and t are space and time parameters, respectively and ν is the viscosity
coefficient. Boundary conditions of the Eq. (1) are chosen from

u (a, t) = β1, u (b, t) = β2, (2)

and initial condition is
u (x, 0) = f (x) , x ∈ [a, b] . (3)

f (x) and β1, β2 constants are described in the computational section.

2. Exponential B-splines Galerkin Finite Element Solution
Divide spatial interval [a, b] in N subintervals of length h = b−a

N and xi = x0 + ih at the knots
xi, i = 0, .., N and time interval [0, T ] in M interval of length ∆t.

Let φi (x) be the exponential B-splines defined at the knots xi, i = 0, . . . , N, together with
fictitious knots xi, i = −3,−2,−1, N + 1, N + 2, N + 3 outside the interval [a, b]. The φi (x) ,
i = −1, . . . , N + 1 can be defined as

φi (x) =



b2

[
(xi−2 − x)− 1

p (sinh (p (xi−2 − x)))
]

if x ∈ [xi−2, xi−1] ;

a1 + b1 (xi − x) + c1e
p(xi−x) + d1e

−p(xi−x) if x ∈ [xi−1, xi] ;

a1 + b1 (x− xi) + c1e
p(x−xi) + d1e

−p(x−xi) if x ∈ [xi, xi+1] ;

b2

[
(x− xi+2)− 1

p (sinh (p (x− xi+2)))
]

if x ∈ [xi+1, xi+2] ;

0 otherwise

(4)

where

p = max
0≤i≤N

pi, s = sinh (ph) , c = cosh (ph) , a1 =
phc

phc− s
, b1 =

p

2

[
c (c− 1) + s2

(phc− s) (1− c)

]
,

b2 =
p

2 (phc− s)
, c1 =

1

4

[
e−ph (1− c) + s

(
e−ph − 1

)
(phc− s) (1− c)

]
, d1 =

1

4

[
eph (c− 1) + s

(
eph − 1

)
(phc− s) (1− c)

]
.

The φi (x) , i = −1, . . . , N + 1 forms a basis for functions defined on the interval [a, b]. The
Galerkin method consists of seeking approximate solution in the following form:

u (x, t) ≈ U (x, t) =
N+1∑
i=−1

φi (x) δi (t) (5)

where δi (t) are time dependent unknowns to be determined from the boundary conditions and
Galerkin approach to the Eq. (1). The approximate solution and the first two derivatives at the
knots can be found from the (4-5) as

Ui = U(xi, t) = α1δi−1 + δi + α1δi+1,
U ′i = U ′(xi, t) = α2δi−1 − α2δi+1,
U ′′i = U ′′(xi, t) = α3δi−1 − 2α3δi + α3δi+1

(6)

where α1 = s−ph
2(phc−s) , α2 = p(1−c)

2(phc−s) , α3 = p2s
2(phc−s) .

Over the sample interval [xm, xm+1], applying Galerkin approach to Eq. (1) with the weight
function φj (x) yields

xm+1∫
xm

φj (x) (ut + uux − νuxx) dx. (7)
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Substitution of the (6) into the integral equation lead to

m+2∑
i=m−1

xm+1∫
xm

φjφidx

 •δi +

xm+1∫
xm

φj

(
m+2∑

k=m−1
δkφk

)
φ′idx

 δi − ν

xm+1∫
xm

φjφ
′′
i dx

 δi, (8)

where i, j and k take only the values m − 1,m,m + 1,m + 2 for m = 0, 1, . . . , N − 1 and the
notation • denotes time derivative.

If we denote Ae
ji, B

e
jki(δ

e) and Ce
ji by

Ae
ji =

xm+1∫
xm

φjφidx, Be
jki (δ) =

xm+1∫
xm

φj

(
m+2∑

k=m−1
δkφk

)
φ′idx, Ce

ji =
xm+1∫
xm

φjφ
′′
i dx (9)

where Ae and Ce are the element matrices of which dimensions are 4 × 4 and Be (δe) is the
element matrix with the dimension 4× 4× 4, (8) can be written in the matrix form as

Ae
•
δe + (Be (δe)− νCe) δe, (10)

where δe= (δm−1, ..., δm+2)
T .

Gathering the systems (10) over all elements, we obtain global system

A
•
δ + (B (δ)− νC) δ = 0 (11)

where A,B (δ) ,C are derived from the corresponding element matrices Ae,Be (δe) ,Ce,

respectively and δ = (δ−1, ..., δN+1)
T contains all elements parameters.

The unknown parameters δ are interpolated between two time levels n and n + 1 with the
Crank-Nicolson method

δ =
δn+1 + δn

2
,
•
δ =

δn+1 − δn

∆t
.

Then we obtain iterative formula for the time parameters δn[
A+

∆t

2

(
B
(
δn+1

)
− νC

)]
δn+1 =

[
A−∆t

2
(B (δn)− νC)

]
δn. (12)

The set of equations consist of (N + 3) equations with (N + 3) unknown parameters. Boundary
conditions must be adapted into the system. Because of the this requirement, initially the first
and last equations are eliminated from the (12) and parameters δn+1

−1 and δn+1
N+1 are substituted

in the remaining system (12) by using following equations

u (a, t) = α1δ
n+1
−1 + δn+1

0 + α1δ
n+1
1 = β1, u (b, t) = α1δ

n+1
N−1 + δn+1

N + α1δ
n+1
N+1 = β2

which are obtained from the boundary conditions. Thus we obtain a septa-diagonal matrix with
the dimension (N + 1)× (N + 1). Since the system (12) is an implicit system together with the
nonlinear term B

(
δn+1

)
, we have used the following inner iteration at each time step (n+ 1)∆t

to work up solutions:

(δ∗)n+1 = δn +
(δn − δn−1)

2
. (13)

We use the above iteration three times to find the new approximation (δ∗)n+1 for the parameters
δn+1 to recover solutions at time step (n+ 1)∆t.
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To start evolution of the iterative system for the unknown δn, the vector of initial parameters
δ0 must be determined by using the following initial and boundary conditions:

u′(x0, 0) =
p (1− c)

2 (phc− s)
δ−1 +

p (c− 1)

2 (phc− s)
δ1, u

′ (xN , 0) =
p (1− c)

2 (phc− s)
δN−1 +

p (c− 1)

2 (phc− s)
δN+1

u (xm, 0) =
s− ph

2 (phc− s)
δm−1 + δm +

s− ph
2 (phc− s)

δm+1, m = 0, ..., N.

(14)
The solution of matrix equation (14) with the dimensions (N + 1)× (N + 1) is obtained by the
way of Thomas algorithm. Once δ0 is determined, we can start the iteration of the system to
find the parameters δn at time tn = n∆t. Approximate solutions at the knots are found from
the (6).

3. Test Problems
The robustness of the algorithm is shown by studying two test problems. Error is measured by
the maximum error norm;

L∞ =
∥∥uexact − unumeric

∥∥
∞ = max

0≤j≤N

∣∣uexactj − unumeric
j

∣∣ . (15)

The free parameter p of the exponential B-spline is found by scanning the predetermined interval
with very small increment.

(a) A shock propagation solution of the Burgers’ equation is

u(x, t) =
x/t

1 +
√
t/t0 exp(x2/(4νt))

, t ≥ 1, (16)

where t0 = exp(1/(8ν)). The sharpness of the solutions increase with selection of the smaller ν.
Substitution of the t = 1 in (16) gives the initial condition. The boundary conditions

u(0, t) = 0 and u(1, t) = 0 are used. Computations are performed with parameters ν = 0.0005,
0.005, 0.01, h = 0.02, 0.005 and ∆t = 0.01 over the solution domain [0, 1]. As time increases,
shock evaluation is observed and some graphical solutions are drawn in Figs. 1 and 2 for various
viscosity values and space steps. For ν = 0.01, algorithm produces smoother shock during run

Figure 1. Solutions for ν = 0.01,
h = 0.02, p = 0.005111.

Figure 2. Solutions for ν = 0.0005,
h = 0.005, p = 0.005941.

time. With decreasing values of ν, as seen in the Fig. 2 the steepening occurs. For the smaller
viscosity constant ν = 0.0005, the sharper shock is observed and steepness of numerical solution
is kept almost unchanged during the program run. The results obtained by present scheme can
be compared with previous ones through the computation of error norm L∞ at various times
in the Table 1.
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Table 1. Comparison of numerical results at different times.

L∞ × 103 L∞ × 103 L∞ × 103

h = 0.005, ν = 0.005 t = 1.7 t = 2.4 t = 3.1

Present (p = 0.005941) 3.15776 2.33757 4.79061
Ref. [3] (QBGM) 1.20755 0.80187 4.79061
Ref. [6] (QBCM1) 0.06192 0.05882 4.43469
Ref. [7] (QBCA1) 1.21175 0.80771 4.79061
Ref. [8] 0.04284 0.06464 4.79061

h = 0.02, ν = 0.01 t = 1.7 t = 2.1 t = 2.6

Present (p = 0.005111) 8.08651 7.53518 8.06798
Ref. [5] 3.13476 2.66986 8.06798
Ref. [6] (QBCM1) 0.40431 0.86363 6.69425
Ref. [7] (QBCA1) 0.47456 1.14759 8.06798
Ref. [8] 0.09592 1.14760 8.06799

The absolute error distributions between the analytical and numerical solutions are drawn in
Figs. 3 and 4 for various viscosity values and space steps.

Figure 3. Absolute error for ν = 0.01,
h = 0.02, p = 0.005111.

Figure 4. Absolute error for ν = 0.005,
h = 0.02, p = 0.000739.

(b) A well-known analytical solution of Burgers’ equation is

u(x, t) =
α+ µ+ (µ− α) exp η

1 + exp η
, 0 ≤ x ≤ 1, t ≥ 0, (17)

where η =
α (x− µt− γ)

ν
. α, µ and γ are constants. Parameters α = 0.4, µ = 0.6 and γ = 0.125

are used to coincide with the some previous studies. This solution involves a travelling wave
and move to the right with speed µ. Initial condition is obtained from (17) when t = 0. The
boundary conditions are u(0, t) = 1, u(1, t) = 0.2 for t > 0.

The calculation is performed with time step ∆t = 0.01, space step h = 1/36 and viscosity
coefficient ν = 0.01. The program is run up to time t = 0.5. We have found L∞ =
6.73543978 × 10−4 for the exponential B-spline Galerkin method at time t = 0.5 documented
in Table 2 with results of the quadratic B-spline Galerkin method [3], the quartic B-spline
collocation method [6], the quintic B-spline collocation method [7] and the quartic B-spline
Galerkin method [8].
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The numerical solution obtained by the present scheme gives better results than the others.
The profiles of initial wave and solution at some times are depicted in Fig. 5. Error variations
of the scheme are given in Fig. 6 at time t = 0.5.

Figure 5. Solutions for ν = 0.01. Figure 6. Absolute error for ν = 0.01.

Table 2. Comparison of results at t = 0.5 for h = 1/36, ν = 0.01.

Present Ref. [3] Ref. [6] Ref. [7] Ref. [8]
(p = 0.002323) (QBGM) (QBCM1) (QBCA1) (QBGM)

L∞ × 103 0.67354 6.35489 3.03817 5.78454 1.44

4. Conclusion
In this paper, we investigate the utility of the exponential B-spline in the Galerkin algorithm
for solving the Burgers’ equation. The efficiency of the method is tested for a shock propagation
solution and a travelling solution of the Burgers’ equation. For the first test problem, solutions
found with the present methods are in good agreement with the results obtained by previous
studies. In the second test problem, present method leads to accurate results than all of the
others. In conclude, the numerical algorithm in which the exponential B-spline functions are
used, performs well compared with other existing numerical methods for the solution of Burgers’
equation.
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