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Abstract. In this paper, we determine self dual and self orthogonal codes arising from
negacyclic codes over the group ring (Fq + vFq)G. By taking a suitable Gray image of these
codes we obtain many good parameter quantum error-correcting codes over Fq .

1. Introduction and Preliminaries
Quantum error-correcting (QEC) codes play a crucial role in protecting quantum information. In
recent years many researchers have been working to find quantum codes with good parameters
over various fields. The construction of quantum codes via classical codes over F2 was first
introduced by Calderbank and Shor [4] and Steane [13] in 1996. This method, known as CSS
construction, has received a lot of attention and it has allowed to find many good quantum
stabilizer codes. Later, construction of quantum codes over larger alphabets from classical linear
codes over Fq has shown by Ketkar et al. in [10]. One direction of the main research in quantum
error correction codes is constructing quantum codes that have large minimum distances [9] for
a given size and length. In [14], based on classical quaternary constacyclic linear codes, some
parameters for quantum codes are obtained. In [8, 9], respectively based on classical negacyclic
and constacyclic linear codes some parameters for quantum MDS codes are presented. In this
work, we determine self-dual and self-orthogonal codes arising from constacyclic codes over the
group ring (Fq + vFq)G. Based on these codes we obtain some quantum codes with promising
parameters.

R = Fq + vFq is a commutative, characteristic 3 ring with v2 = v or with a ring isomorphism
Fq [v] /

〈
v2 − v

〉
. For a prime p and an integer k take n = 2pk then the set G = 2Z∗

n is a cyclic

group of order pk − pk−1 and identity element pk + 1. Then, the group ring RG is the set of all
linear combinations in the form u =

∑
g∈G

αgg such that αg ∈ R and only finitely many of the αg’s

are non-zero. This set is a commutative ring with respect to the following binary operations

u+ v =
∑
g∈G

αgg +
∑
g∈G

βgg =
∑
g∈G

(αg + βg) g
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and

uv =

∑
g∈G

αgg

(∑
h∈G

βhh

)
=
∑

g,h∈G
αgβhgh.

A non-zero element u ∈ RG is a zero-divisor if and only if there exists a non-zero v ∈ RG
such that uv = 0. For a fixed listing {g1, g2, . . . , gn} of the elements of G the RG matrix of the

element w =
n∑

i=1
αgigi ∈ RG is defined as

W =


αg−1

1 g1
αg−1

1 g2
. . . αg−1

1 gn

αg−1
2 g1

αg−1
2 g2

. . . αg−1
2 gn

...
...

...
...

αg−1
n g1

αg−1
n g2

. . . αg−1
n gn

 .

A group ring RG is isomorphic to a subring of the ring of n× n matrices over R [6].
The rank of an element u =

∑
g∈G

αgg in RG is the rank of the matrix U. The transpose

of an element u =
∑
g∈G

αgg in RG is uT =
∑
g∈G

αgg
−1 or equivalently uT =

∑
g∈G

αg−1g.

Given an element α =
∑

αgg
g∈G

∈ RG, its support is the set supp (α) = {g ∈ G|αg 6= 0} . The

Hamming weight of an element α ∈ RG is the number of nonzero coefficient group elements
in its support i.e., w (α) = |supp (α)| . The minimum weight of a submodule M in RG is
w (M) = min {|supp (α)|| 0 6= α ∈ M} . Let wL denote the Lee weight and wH denote the
Hamming weight for the codes over R = Fq + vFq. Then, we set

wL (a+ bv) = wH (a, a+ b) .

The definition of the weight immediately leads to a Gray map from R to F 2
q which can be

extended to (Fq + vFq)
n :

φ : R → F 2
q , φ (a+ bv) = (a, a+ b) .

This map is a distance preserving map from R to F 2
q . Let x =

∑
αgg

g∈G
, and y =

∑
βgg

g∈G
be two

elements in the group ring RG. Then, the inner product of x and y is given by term-by-term
multiplication of the coefficients of x and y, namely 〈x, y〉 =

∑
g∈G

αgβg.

Let a1 + b1v and a2 + b2v be any two elements in R. Then, we have

(a1 + b1v) (a2 + b2v)

= a1a2 + (a1b2 + b1a2 + b1b2) v = 0

⇔ a1a2 = 0 and a1b2 + b1a2 + b1b2 = 0.

Hence, the following relation is valid.

(a1, a1+b1) (a2, a2+b2)

= a1a2 + a1a2 + a1b2 + b1a2 + b1b2 = 0.

As a result of this fact, the map φ is a orthogonality preserving map. The map

θ : RG → Rn, θ

(
n∑

i=1

αigi

)
= (α1, α2, . . . , αn) (1)
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is an isomorphism from RG to Rn. Thus every element in RG can be considered as an n-tuple
in Rn.

A linear code C of length n over R, is a submodule of Rn. A linear code of length n, dimension
k, and minimum (Hamming) distance d over R is termed as an [n, k, d]q code [12]. The algebraic

structure of constacyclic codes is described in detail in [3, 1]. Let n be a positive integer and α
be a unit element of R. A linear code C of length n over R is said to be α−constacyclic if for
any codeword (c0, c1, . . . , cn−1) ∈ C we have that (αcn−1, c0, c1, . . . , cn−2) ∈ C. If we take α as
−1, then the code is called negacyclic.

The cyclic codes of length m are ideals in the quotient ring R[x]/ 〈xm − 1〉. Further, for
a cyclic group Cm of order m we have R[x]/ 〈xm − 1〉 ∼= RCm. Similar to the cyclic codes
e−constacylic codes of length m can be viewed as ideals in the quotient ring R[x]/ 〈xm − e〉 .
Our aim is to construct a group G such that the isomorphism R[x]/ 〈xm − e〉 ∼= RG exist, where
e ∈ Fq and e 6= 0, 1. For n = 2pk, where p is an odd prime and k is an integer we show that the
set of all doubled elements G = 2Z∗

n in Z∗
n, is a multiplicative cyclic group of order m = ϕ (n) (ϕ

is the Euler totient function) with identity element e = pk + 1, such that e 6= 1. Afterwards, we
obtain self dual and self orthogonal

(
pk + 1

)
−constacyclic codes of length ϕ (n) over (Fq + vFq)

by considering these codes as ideals in the group ring (Fq + vFq)G.

Definition 1 [7] Let u be a zero-divisor in RG, i.e. uv = 0 for some non-zero v ∈ RG. Let
W be a submodule of RG with basis of group elements S ⊆ G. Then, a zero-divisor code is
C = {ux|x ∈ W} = uW or C = {xu|x ∈ W} = Wu.

Definition 2 [7] A zero-divisor u with rank(U) = r is called a principal zero-divisor if and only
if there exists a v ∈ RG such that uv = 0 and rank(V ) = n− r .

Corollary 3 [7] C = {xu|x ∈ W} has a unique check element if and only if u is a principal
zero divisor.

The dual of a code with respect to the standard inner product forms a group ring encoding
as well where the dual is defined by

C⊥ = {y ∈ RG| 〈ux, y〉 = 0,∀x ∈ W} .

Theorem 4 [7] Let u, v ∈ RG such that uv = 0. Let U and V be the RG matrices of u and v
respectively, such that rank(U) = r and rank(V ) = n−r. Let W be a submodule over a basis S ⊂
G of dimension r such that Su is linearly independent and W⊥ denote the submodule over basis
G\S. Then, the dual code of C = {xu|x ∈ W} is C⊥ =

{
xvT

∣∣x ∈ W⊥} =
{
y ∈ RG| yuT = 0

}
.

2. Constacyclic Codes over Group Ring (Fq + vFq)G
In this section, we extend the notion of cyclic group ring codes to constacyclic group ring codes.
Throughout this section, we assume p is an odd prime, R = Fq + vFq and n = 2pk under the
restrictions gcd

(
q, ϕ

(
2pk
))

= 1, and pk + 1 6= 0, 1 (mod q) .

Let Zn be the set of integers modulo n = 2pk. Let G = 2Z∗
n ⊂ Zn be the set of all doubled

elements in Z∗
n.

Theorem 5 The set G = 2Z∗
n, all doubled elements in Z∗

n, is a cyclic multiplicative group with
identity element e = pk + 1.

Corollary 6 Let p be an odd prime and n = 2p. Then, G = 2Z∗
n the set of all doubled elements

in Z∗
n is a cyclic multiplicative group with identity element e ≡ p+ 1.

Theorem 7 Let G be the cyclic group given in Theorem 5 and R = Fq + vFq such that
gcd

(
ϕ
(
pk
)
, q
)

= 1. Also, let u, v ∈ RG be principle zero divisors. Then, (RG)u is an

e−constacyclic code of length ϕ
(
pk
)
and dimension rank (u) .
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Corollary 8 The dual code of the code given in the Theorem 7 is a e−1−constacyclic code of
length ϕ

(
pk
)
and dimension rank (v) .

3. Self Dual and Self Orthogonal Constacyclic Codes over (Fq + vFq)G
This section is devoted to determining self dual and self orthogonal codes arising from
constacyclic codes over group algebras.

Lemma 9 Let C = θ ((RG)u) be an e−constacyclic code of length ϕ
(
pk
)
given in Theorem 7

with dual code C⊥ = θ
(
(RG) vT

)
. Then, the code C⊥ = θ

(
(RG) vT

)
is also an e−1−constacyclic

code of length ϕ
(
pk
)
.

Theorem 10 Let C = θ ((RG)u) be an e−constacyclic code of length ϕ
(
pk
)
given in Theorem

7 with dual code C⊥ = θ
(
(RG) vT

)
. Then, C is self dual if and only if e2 = 1 (mod q) and

u = vT .

Corollary 11 Let C = θ ((RG)u) be an e−constacyclic code of length ϕ
(
pk
)
given in Theorem

7 with dual code C⊥ = θ
(
(RG) vT

)
. Then, pk ≡ 2 (mod q) .

Theorem 12 Let C = θ ((RG)u) be an e−consta cyclic code of length ϕ
(
pk
)
given in Theorem

7 with dual code C⊥ = θ
(
(RG) vT

)
. Then, C is self orthogonal if and only if e2 = 1 (mod q)

and for some w ∈ RG u = wvT .

Corollary 13 If C = θ ((RG)u) is an e−constacyclic code with parameters
[
ϕ
(
pk
)
, rank (u) , d

]
q

then, φ (C) is an e−constacyclic code with parameters
[
2ϕ
(
pk
)
, 2rank (u) , d

]
q
.

4. Quantum Codes Obtained from Negacyclic Codes over (Fq + vFq)G
The construction of quantum codes via classical codes over F2 was first introduced by Calderbank
and Shor [4] and Steane [13] in 1996. Later, construction quantum codes over different alphabets
obtained from classical linear codes over Fq has been shown by Ketkar et al. in [10]. A quantum
error correcting code Q is defined as follows:

Definition 14 A q−ary quantum code Q, denoted by [[n, k, d]]q, is a qk dimensional subspace

of the Hilbert space Cqn and can correct all errors up to bd−1
2 c.

The following lemma is a method to get quantum error correcting codes via classical linear
codes over finite fields.

Lemma 15 (CSS Code Construction) [10] Let C1 and C2 denote two classical linear codes
with parameters [n, k1, d1]q and [n, k2, d2]q such that C⊥

2 ≤ C1. Then there exists a [[n, k1+k2−
n, d]]q quantum code with minimum distance d = min{wt(c)|c ∈ (C1\C⊥

2 ) ⊂ (C2\C⊥
1 )}.

Corollary 16 [10] If C is a classical linear [n, k, d]q code containing its dual, C⊥ ⊂ C, then
there exists an [[n, 2k − n,≥ d]]q quantum code.

For further and detailed information readers can refer to the references [4, 5, 13]. We will
use Corollary 16 to derive quantum error-correcting codes based on self dual and self orthogonal
constacyclic codes over group algebras given in Theorem 10 and 12. All the computations are
done using MAGMA [3].
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Table 1. Some parameters of quantum codes obtained from self dual (self orthogonal)
2−constacyclic codes of length 40 over F3.

vT u φ(C⊥) φ(C) Q
g10 + 2g9 + g8 + g7+
g6 + g4 + 2g3 + 2g + 2

2g10 + g9 + 2g8 + 2g7+
2g6 + 2g4 + g3 + g + 1

[40, 20, 6]3 [40, 20, 6]3 [[40, 0,≥ 6]]3

g12 + g10 + g8

+g4 + 2g2 + 1
g8 + g6 + 2g2 + 1 [40, 16, 6]3 [40, 24, 4]3 [[40, 8,≥ 4]]3

g14 + 2g13 + g11 + 2g10

+g9 + g7 + 2g5 + g4

+g3 + 2g2 + g + 2
2g6 + 2g5 + g2 + g + 1 [40, 12, 9]3 [40, 28, 4]3 [[40, 16,≥ 4]]3

g16 + 2g14 + g13 + g11

+2g10 + g9 + 2g8 + g5

+g4 + 2g3 + g + 1
g4 + 2g3 + g2 + 1 [40, 8, 12]3 [40, 32, 3]3 [[40, 24,≥ 3]]3

g18 + 2g17 + 2g16+
2g14 + g13 + g12 + g10

+2g9 + 2g8 + 2g6 + g5

+g4 + g2 + 2g + 2

2g2 + g + 1 [40, 4, 15]3 [40, 36, 2]3 [[40, 32,≥ 2]]3

Table 2. Some parameters of quantum codes obtained from self dual (self orthogonal)
4−constacyclic codes of length 44 over F5.

u vT φ(C⊥) φ(C) Q
g11 + 3g10 + 3g9 + 4g8

+4g7 + 2g6 + 4g5 + 2g4

+g3 + 3g2 + g + 3

g11 + 3g10 + 3g9 + 4g8

+4g7 + 2g6 + 4g5 + 2g4

+g3 + 3g2 + g + 3
[44, 22, 6]5 [44, 22, 6]5 [[44, 0, 6]]5

g16 + g15 + 2g14+
3g13 + 3g12 + 4g11+
2g10 + 4g9 + 3g8+

g7 + 2g6 + g5 + 3g2 + 1

g6 + 2g4 + 4g2 + 4g + 1 [44, 12, 12]5 [44, 32, 4]5 [[44, 20,≥ 4]]5

g12 + 2g10 + 3g6

+2g4 + 4g2 + 1
g10 + g8 + 4g6

+4g4 + 3g2 + 1
[44, 20, 6]5 [44, 24, 5]5 [[44, 4,≥ 5]]5

g17 + g16 + g14 + 2g13+
2g12 + 4g11 + 3g6 + 3g5

+3g3 + g2 + g + 2

3g5 + g4 + 3g3

+g2 + 4g + 1
[44, 10, 12]5 [44, 34, 2]5 [[44, 24,≥ 2]]5

Example 17 Let R = F3 + vF3 and

G = {2, 4, 6, 8, 12, 14, 16, 18, 22, 24, 26, 28, 32, 34, 36, 38, 42, 44, 46, 48} ⊂ Z50,

be the multiplicative cyclic group mentioned in Corollary 6. Also, let u = g18 + g17 + 2g16 +
2g14+2g13+ g12+ g10+ g9+2g8+2g6+2g5+ g4+ g2+ g+2 and vT = 2g2+2g+1 be two zero
divisors in the group algebra R such that rank (u) = 2 and rank (v) = 18. Then, the two sided
ideal (RG)u = {xu|x ∈ RG} ⊂ RG is a 2−constacyclic code (negacyclic code) of parameters
[20, 2, 15]3 . The generator matrix of this code can be computed as

G =

(
1 0 1 2 2 0 2 1 1 0 1 2 2 0 2 1 1 0 1 2
0 1 2 2 0 2 1 1 0 1 2 2 0 2 1 1 0 1 2 2

)
.

So, φ (θ ((RG)u)) is a 2−constacyclic code (negacyclic code) of parameters [40, 4, 15]3 . The
dual code of this code is the two sided ideal (RG) vT =

{
xvT

∣∣x ∈ RG
}
⊂ RG with parameters

[20, 18, 2]3 . Further, φ
(
θ
(
(RG) vT

))
is a 2−constacyclic code (negacyclic code) of parameters

[40, 36, 2]3 . By using Corollary 16 we have quantum code Q of parameters [[40, 32,≥ 2]]3.

5. Conclusion
In this work, we determine self dual and self orthogonal codes arising from constacyclic codes of
length ϕ

(
pk
)
over group ring (Fq + vFq)G. Further, we obtained some parameters for quantum
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Table 3. Some parameters of quantum codes obtained from self dual (self orthogonal)
6−constacyclic codes of length 36 over F7.

u vT φ(C⊥) φ(C) Q
g10 + 5g8 + 4g6 + 2g4 + 3g2 + 1 g8 + 4g6 + 2g2 + 1 [36, 16, 3]7 [36, 20, 3]7 [[36, 4,≥ 3]]7

g16 + 3g14 + 2g12 + 6g10

+4g8 + 5g6 + g4 + 3g2 + 2
4g2 + 1 [36, 4, 9]7 [36, 32, 2]7 [[36, 28,≥ 2]]7

g12 + 3g6 + 2 4g6 + 1 [36, 12, 3]7 [36, 24, 2]7 [[36, 12,≥ 2]]7

codes derived from self dual and self orthogonal codes arising from these codes. This family of
codes awaits further studies since most of obtained codes are near optimal codes.
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