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Abstract. This paper is devoted to investigation of a polynomial type Jost solution for the self-

adjoint quantum Dirac system. After examination of analytical features and asymptotic 

behaviour of the Jost solution, continuous and discrete spectrum and some properties of the 

eigenvalues of the operator L  generated by the quantum difference system have been 

discussed. 

1.  Introduction 

Spectral analysis of differential and difference operators is of great importance for the solutions of  

certain problems in many areas including engineering, economics, quantum mechanics and 

mathematical physics [1-5]. In this context, Dirac system of differential and discrete operators have 

been studied in [6-8].  

In the last years, an important effort has been devoted to quantum calculus [9]. As a consequence 

of developments in quantum theory, quantum difference equations has been subject matter of various 

studies [10-12]. In particular, spectral analysis of quantum difference equations has been studied in 

[13-15]. However, the Dirac system of quantum difference equations including a polynomial type Jost 

solution has not been examined in the known literature yet. 

In this paper, we assume 1q   and use the notation 

 0

0: :nq q n   

where 0  indicates the set of nonnegative integers. The q-derivative of a function :f q   is 

defined by 

( ) ( )
( ) :

( )

f qt f t
f t

t

 
 , ,t q   

where ( ) ( 1)t q t    is the graininess function [10]. Hereafter, we will denote the Hilbert space 

2

2( , )l q  including all sequences  
(1)

(2)

( )
( )

( )

y t
y y t

y t

 
   

 
 with the inner product, 

2

(1) (1) (2) (2)

( , )
, : ( ) ( ) ( ) ( ), , :

q
t q

y f y t f t y t f t y f q


    
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and the norm 

2

1

2
2 2

(1) (2)

( , )
( ) ( ) ( )

q
t q

y t y t y t


 
   
 
  for  :y q   

by 
2

2( , )l q . 

      Let us consider the system 
(1)

(2) (1)

(2)
(1) (2)

( )
( ( )) ( ) ( ) ,

( )

( )
( ( )) ( ) ( ) ,

( )

y t
y t p t y t

t
t q

t y t
y r t y t

q t














 




  


                                         (1.1) 

where  ( )
t q

p t


,  ( )
t q

r t


 and  ( )
t q

t


 are real sequences for all t q  and   is a spectral 

parameter. Note that, the system of equations (1.1) is quantum analogue of the well-known Dirac 

system 

1 1 1

2 2 2

0 1 ( ) 0

1 0 0 ( )

y y yp x

y y yq x


        
                 

 

([6], Chapter 2). For this reason, the system (1.1) is called a quantum Dirac system. It is worth to point 

out here that the construction of the quantum Dirac system (1.1) is completely different from other 

studies [7, 8] because of the quantum derivative of a function. 

     Let us define the operator L  generated in 
2

2( , )l q  by the following system of quantum 

difference expression: 
(2) (2) (1)

(1) (1) (2)

( ) ( ) ( ) ( ) ( )

( )( )
( ) ( ) ( ) ( ) ( )

y qt y t p t t y t

ly t t
y y t r t t y t

q





  
 


   
 

 

where  ( )
t q

p t


,  ( )
t q

r t


 and  ( )
t q

t


 are real sequences. It is clear that the system of 

equations (1.1) can be rewritten as 

( )( ) ( ), .Ly t y t t q   

    The set up of this paper organized as follows: Section 2 is concerned with the investigation of the 

polynomial type Jost solution of the system (1.1) with the boundary condition 
(1) (1) 0y                                                                  (1.2) 

and investigate analytic properties and asymptotic behavior of the Jost solution. Section 3 presents 

continuous and discrete spectrum and some properties of the eigenvalues of the boundary value 

problem BVP (1.1)-(1.2). 

 

2.  Jost solution and Jost function of (1.1) 

Let the real sequences  ( )
t q

p t


,  ( )
t q

r t


 and  ( )
t q

t


 satisfy the condition 

 
ln

( ) ( ) ( ) ( )
lnt q

t
p t t r t t

q
 



   .                                          (2.1) 

Theorem 2.1. Under the condition (2.1), the system of equations (1.1) has unique solutions 
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0

(1)
2log 2log

(2)

1 0( , )
( , ) ,

0 1( , )

q qr t

tr

r q

zf t z
f t z A z z

if t z 

      
        

       
                                     (2.2) 

0 0

2log 1 2log(1) 11 12

1 1(1, ) ,q qr r

r r

r q r q

f z z A z i A z


 

                                          (2.3) 

for 
1( ) ,iz iz     t q  and 1z   where 

11 12

21 22

tr tr

tr

tr tr

A A
A

A A

 
  
 

. 

Proof. If we substitute the equation (2.2) in the system of equations (1.1) and take 
1( )iz iz     

and 1z  , then we obtain 

                       

12

,

( ) ( ) ( ) ( ),tq

s qt q

A p s s r s s 
  

    

                   

11 12

,

( ) ( ) ,tq sq

s qt q

A p s s A
  

   

                   

22 12

,

( ) ( ) ,tq sq

s t q

A p s s A
  

   

                   

21 12 11 22 11

,

( ) ( ) ( ) ( ) ( ) ( ) ,tq tq tq sq sq

s qt q

A A p t t A r s s A p s s A  
  

       

                  

2

12 11 22

,

( ) ( ) ( ) ( ) ,sq sqtq
s qt q

A p s s A r s s A 
  

      

                  

2 2

11 22 12 21

, ,
,

( ) ( ) ( ) ( ) ,qt q sqtq s q
s qt q

A A p s s A r s s A 
  

    
   

                  

2 2

22 11 12 21

,,
,

( ) ( ) ( ) ( ) ,tq sq qtq s q
s t q

A A p s s A r sq sq A 
  

    
   

                  

2 2 2 2

21 12 11 22

, , ,
,

( ) ( ) ( ) ( ) ,
tq t q s q sq q

s t q

A A p s s A r sq sq A 
  

   
   

for 
3r q  

                
 2

12 21 22 11

, , ,
,

( ) ( ) ( ) ( ) ,tr r r r
tq s s

s tq q q qq

A A r s s A p s s A 
  

    

                
 2

11 22 12 21

, ,
,

( ) ( ) ( ) ( ) ,tr t sr r
tq s

s tq q qq

A A p s s A r s s A 
  

     

               
 

22 11 12 21

, ,
,

( ) ( ) ( ) ( ) ,tr t sr r
t sq

s t qq q

A A p s s A r sq sq A 
  

 
    

 
 

  

               

 
 

21 12 11 22 11

,

( ) ( ) ( ) ( ) ( ) ( ) .tr tr tr sr sr

s tq q

A A p t t A r s s A p s s A  
  

     

Based on the condition (2.1), the series in the definition of 
ij

trA  ( , 1, 2)i j   are absolutely convergent. 

Hence, 
ij

trA  ( , 1, 2)i j   can be uniquely determined by ( )p t , ( )r t  and ( )t  ( )t q , i.e., the 

system (1.1) has the solution given by the equations (2.2) and (2.3).                                                              

 

The solution f  is called Jost solution of the system of equations (1.1). Using the inequalities for 

ij

trA  ( , 1, 2)i j   given in Theorem (2.1), we find 
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 
ln

2 ln
[ , )

( ) ( ) ( ) ( ) , , 1,2,
r

q

ij

tr

s tq q

A C p s s r s s i j 
 
 
 



  

                                  (2.4) 

by induction, where 
ln

2ln

r

q

 
 
 

 is the integer part of 
ln

2ln

r

q
, 0C   is a constant and , .t r q  

     It is clear from the equations (2.2), (2.3) and (2.4) that 

(1)

(2)

( , )

( , )

f t z

f t z

 
 
 

 has analytic continuation from 

 : 1z z   to    : : 1 \ 0 .D z z   

Theorem 2.2. If the condition (2.1) holds then the Jost solution f  satisfies the following asymptotic: 

   
(1)

2log

(2)

1 0( , )
(1) , : : 1 \ 0 , .

0 1( , )

q tzf t z
o z z D z z t

if t z

      
           

      
          (2.5) 

Proof. It can be written from the equation (2.2) that 

0 0

2log 1 2log 2log 1(1) 11 12( , ) 1 .q q qt r r

tr tr

r q r q

f t z z A z i A z
  

 

                                   (2.6) 

From the equations (2.4) and (2.6), it is seen that 

              

                                          
0 0

2log 1(1) 11 12( , ) 1q t

tr tr

r q r q

f t z z A A
 

 

      

 

             
0 ln

2 ln
,

1 2 ( ) ( ) ( ) ( )
r

q
r q

s tq q

C p s s r s s 
 
 
 

 
  
 

     

                           
 0 ,

ln ln
1 2 ( ) ( ) ( ) ( )

ln lns tq qr q

s t
C p s s r s s

q q
 

  

 
    

 
 

 

                                          

                                       

 
 ,

ln
1 2 ( ) ( ) ( ) ( )

lns tq q

s
C p s s r s s

q
 

  

                                   (2.7)

 
where 0C   is a constant. Then, we get from the equation (2.7) that 

 
2log 1(1) ( , ) 1 (1) , , .q t

f t z z o z D t


                                             (2.8) 

In a similar way to equation (2.8), we have 

 
2log(2) ( , ) 1 (1) , , .q t

f t z iz o z D t                                             (2.9) 

From equations (2.8) and (2.9), we obtain the equation (2.5).                                                                                                     

 
 

3.  Main Results 

Now, we shall give some theorems and definitions to prove our main results. We begin with 

investigating continuous spectrum of the operator L . 

Theorem 3.1. Assume the condition (2.1) satisfies. Then  ( ) 2,2c L   , where ( )c L  represents 

the continuous spectrum of the operator L . 
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Proof. Let 0L  be the operator generated in 
2

2( , )l q  by the following system of quantum difference 

expression: 

 

(2) (2)

0 (1) (1)

( ) ( )

( )
( ) ( )

y qt y t

l y t t
y y t

q

 
 


  
 

 

with the boundary condition 
(1) (1) 0y  . We also define the operator 1L  in 

2

2( , )l q  by the 

following 

 
(1)

1 (2)

( ) ( ) ( )
( )

( ) ( ) ( )

p t t y t
l y t

r t t y t





 
  
 

. 

One can easily observe that the operator 0L  is self-adjoint and 1L  is compact operator [16]. Also, 

0 1L L L   holds. From the Weyl Theorem [17] of a compact perturbation, we find 

 0( ) ( ) 2,2c cL L    .                                                       

Definition 3.1. The Wronskian of two solutions  ( , )
t q

y y t z


  and  ( , )
t q

u u t z


  of (1.1) is 

defined by [ , ]( ) ( , ) ( , ) ( , ) ( , )W y u t y t z u qt z y qt z u t z   for t q . 

     Let  ( ) ( ) ( , )z t      , t q  be the solution of the system of equations (1.1) subject to the 

initial conditions 
(1) (2)(1, ) 0, ( , ) 1.z q z    

Then from definition (3.1) 

  (1) (2) (2) (1)( ), ( ) ( , ) ( , ) ( , ) ( , )W f z z f t z qt z f qt z t z   
                        (3.1)

 

                                                        
(1) (1, ).f z

  
 

Since the operator L  is self-adjoint, the eigenvalues of L  is real valued. By using equation (3.1) and 

the definition of eigenvalues, we get 

    1 (1)( ) : ( ) , 1,0 0,1 , (1, ) 0 ,d L iz iz iz f z                           (3.2) 

where ( )d L  sembolizes the eigenvalues of the operator L . 

Definition 3.2. The multiplicity of a zero of 
(1) (1, )f z  is called the multiplicity of the corresponding 

eigenvalue or spectral singularity of BVP (1.1), (1.2). 

Theorem 3.2. Under the condition (2.1), the operator L  has a finite number of real eigenvalues in .D  

Proof. In order to prove the theorem, it is necessary and sufficient to show that the function 
(1) (1, )f z  

has finite number of real zeros in .D  The accumulation points of the zeros of the analytic function 
(1) (1, )f z  can take real values i , 0 and i . It is known that L  is self-adjoint bounded operator. So its 

eigenvalues is different from infinity. Assume 0 0z   is a zero of the function 
(1) (1, )f z . But in this 

case the eigenvalue   is infinite. Therefore 0 0z   is not a zero of the function 
(1) (1, )f z . Now, 

assume z i  . In this case, 2    and D  is bounded. From Theorem (3.1), 2  are elements of 

continuous spectrum of the operator L . From operator theory, discrete spectrum of a self-adjoint 

operator and continuous spectrum of this operator are distinct. Hence, the set of zeros of the function 
(1) (1, )f z  in D is finite from the Bolzano Weierstrass Theorem. It is obvious from (3.2) that the 

eigenvalues of the operator L  are real. This completes the proof.                                                      
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